Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.
PLoS Pathog. 2012;8(7):e1002832. doi: 10.1371/journal.ppat.1002832. Epub 2012 Jul 26.
Hepatitis C virus (HCV) infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer resistance to nearly all inhibitors in clinical development. Thus, developing the next-generation of drugs that retain activity against a broader spectrum of resistant viral variants requires a comprehensive understanding of the molecular basis of drug resistance. In this study, 16 high-resolution crystal structures of four representative protease inhibitors--telaprevir, danoprevir, vaniprevir and MK-5172--in complex with the wild-type protease and three major drug-resistant variants R155K, A156T and D168A, reveal unique molecular underpinnings of resistance to each drug. The drugs exhibit differential susceptibilities to these protease variants in both enzymatic and antiviral assays. Telaprevir, danoprevir and vaniprevir interact directly with sites that confer resistance upon mutation, while MK-5172 interacts in a unique conformation with the catalytic triad. This novel mode of MK-5172 binding explains its retained potency against two multi-drug-resistant variants, R155K and D168A. These findings define the molecular basis of HCV N3/4A protease inhibitor resistance and provide potential strategies for designing robust therapies against this rapidly evolving virus.
丙型肝炎病毒(HCV)感染全球超过 1.7 亿人,是导致慢性肝病的主要原因,包括肝硬化、肝功能衰竭和肝癌。现有的抗病毒疗法会引起严重的副作用,且仅对一部分患者有效,尽管最近通过包括 boceprevir 和 telaprevir 在内的联合疗法改善了治疗效果,这两种药物可抑制病毒 NS3/4A 蛋白酶。然而,尽管人们付出了广泛的努力来开发更有效的下一代蛋白酶抑制剂,但由于该药物类别的耐药性迅速出现,其长期疗效仍受到挑战。蛋白酶残基 R155、A156 和 D168 上的单点突变使几乎所有在研抑制剂产生耐药性。因此,开发对更广泛耐药病毒变异体仍保持活性的下一代药物需要全面了解耐药的分子基础。在这项研究中,四种代表性蛋白酶抑制剂——telaprevir、danoprevir、vaniprevir 和 MK-5172——与野生型蛋白酶和三种主要耐药变异体 R155K、A156T 和 D168A 的 16 个高分辨率晶体结构,揭示了每种药物耐药的独特分子基础。在酶和抗病毒测定中,这些药物对这些蛋白酶变异体的敏感性存在差异。telaprevir、danoprevir 和 vaniprevir 与突变赋予耐药性的位点直接相互作用,而 MK-5172 以独特的构象与催化三联体相互作用。这种 MK-5172 结合的新方式解释了它对两种多药耐药变异体 R155K 和 D168A 的保留效力。这些发现定义了 HCV N3/4A 蛋白酶抑制剂耐药的分子基础,并为设计针对这种快速进化病毒的稳健疗法提供了潜在策略。