Suppr超能文献

异位钙化导致的人类纤维关节的弹性不连续。

Elastic discontinuity due to ectopic calcification in a human fibrous joint.

机构信息

Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, USA.

出版信息

Acta Biomater. 2013 Jan;9(1):4787-95. doi: 10.1016/j.actbio.2012.08.021. Epub 2012 Aug 20.

Abstract

Disease can alter natural ramp-like elastic gradients to steeper step-like profiles at soft-hard tissue interfaces. Prolonged function can further mediate mechanochemical events that alter biomechanical response within diseased organs. In this study, a human bone-tooth fibrous joint was chosen as a model system, in which the effects of bacterial-induced disease, i.e. periodontitis, on natural elastic gradients were investigated. Specifically, the effects of ectopic biomineral, i.e. calculus, on innate chemical and elastic gradients within the cementum-dentin complex, both of which are fundamental parameters to load-bearing tissues, are investigated through comparisons with a healthy complex. Complementary techniques for mapping changes in physicochemical properties as a result of disease included micro X-ray computed tomography, microprobe micro X-ray fluorescence imaging, transmission electron and atomic force microscopy (AFM) techniques, and AFM-based nanoindentation. Results demonstrated primary effects as derivatives of ectopic mineralization within the diseased fibrous joint. Ectopic mineralization with no cementum resorption, but altered cementum physicochemical properties with increasing X-ray attenuation, exhibited stratified concretion with increasing X-ray fluorescence counts of calcium and phosphorus elements in the extracellular matrix in correlation with decreased hygroscopicity, indenter displacement, and apparent strain-relieving characteristics. Disease progression, identified as concretion through the periodontal ligament (PDL)-cementum enthesis, and sometimes the originally hygroscopic cementum-dentin junction, resulted in a significantly increased indentation elastic modulus (3.16±1.19 GPa) and a shift towards a discontinuous interface compared with healthy conditions (1.54±0.83 GPa) (Student's t-test, P<0.05). The observed primary effects could result in secondary downstream effects, such as compromised mechanobiology at the mechanically active PDL-cementum enthesis that can catalyze progression of disease.

摘要

疾病可以改变天然的斜坡状弹性梯度,使其在软组织界面呈现更陡峭的阶跃状。长期的功能还可以进一步介导机械化学事件,从而改变患病器官的生物力学响应。在这项研究中,选择了人类的骨-牙纤维关节作为模型系统,研究了细菌诱导的疾病(即牙周炎)对天然弹性梯度的影响。具体来说,通过与健康复合体进行比较,研究了异位生物矿化(即牙石)对牙骨质-牙本质复合体固有化学和弹性梯度的影响,牙骨质-牙本质复合体是承载组织的基本参数。用于绘制因疾病而导致的物理化学性质变化的补充技术包括微 X 射线计算机断层扫描、微探针微 X 射线荧光成像、透射电子显微镜和原子力显微镜(AFM)技术以及基于 AFM 的纳米压痕技术。结果表明,主要影响是疾病纤维关节内异位矿化的衍生物。虽然没有牙骨质吸收,但牙骨质物理化学性质发生改变,X 射线衰减增加,表现出分层结石,细胞外基质中钙和磷元素的 X 射线荧光计数增加,与吸湿性、压痕位移和表观应变缓解特性降低有关。疾病的进展被确定为牙周膜(PDL)-牙骨质结合处的结石,有时是最初吸湿性的牙骨质-牙本质结合处的结石,导致明显增加的压痕弹性模量(3.16±1.19 GPa),并且与健康状态相比,界面变得不连续(1.54±0.83 GPa)(学生 t 检验,P<0.05)。观察到的主要影响可能导致次要的下游影响,例如机械活跃的 PDL-牙骨质结合处的机械生物学受损,这可能会促进疾病的进展。

相似文献

1
Elastic discontinuity due to ectopic calcification in a human fibrous joint.
Acta Biomater. 2013 Jan;9(1):4787-95. doi: 10.1016/j.actbio.2012.08.021. Epub 2012 Aug 20.
2
Discontinuities in the human bone-PDL-cementum complex.
Biomaterials. 2011 Oct;32(29):7106-17. doi: 10.1016/j.biomaterials.2011.06.021. Epub 2011 Jul 20.
3
The plastic nature of the human bone-periodontal ligament-tooth fibrous joint.
Bone. 2013 Dec;57(2):455-67. doi: 10.1016/j.bone.2013.09.007. Epub 2013 Sep 21.
4
Strain-guided mineralization in the bone-PDL-cementum complex of a rat periodontium.
Bone Rep. 2015 Dec 1;3:20-31. doi: 10.1016/j.bonr.2015.04.002.
5
Biomechanical pathways of dentoalveolar fibrous joints in health and disease.
Periodontol 2000. 2020 Feb;82(1):238-256. doi: 10.1111/prd.12306.
6
Adaptive properties of human cementum and cementum dentin junction with age.
J Mech Behav Biomed Mater. 2014 Nov;39:184-96. doi: 10.1016/j.jmbbm.2014.07.015. Epub 2014 Jul 24.
7
The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium.
Biomaterials. 2007 Dec;28(35):5238-45. doi: 10.1016/j.biomaterials.2007.08.031. Epub 2007 Sep 17.
8
Reduced functional loads alter the physical characteristics of the bone-periodontal ligament-cementum complex.
J Periodontal Res. 2011 Dec;46(6):730-41. doi: 10.1111/j.1600-0765.2011.01396.x. Epub 2011 Aug 17.
9
Effect of proteoglycans at interfaces as related to location, architecture, and mechanical cues.
Arch Oral Biol. 2016 Mar;63:82-92. doi: 10.1016/j.archoralbio.2015.11.021. Epub 2015 Dec 3.
10
The biomechanical characteristics of the bone-periodontal ligament-cementum complex.
Biomaterials. 2010 Sep;31(25):6635-46. doi: 10.1016/j.biomaterials.2010.05.024. Epub 2010 Jun 11.

引用本文的文献

1
Periodontal ligament entheses and their adaptive role in the context of dentoalveolar joint function.
Dent Mater. 2017 Jun;33(6):650-666. doi: 10.1016/j.dental.2017.03.007. Epub 2017 May 2.
2
Mineral density volume gradients in normal and diseased human tissues.
PLoS One. 2015 Apr 9;10(4):e0121611. doi: 10.1371/journal.pone.0121611. eCollection 2015.
3
Biomechanical adaptation of the bone-periodontal ligament (PDL)-tooth fibrous joint as a consequence of disease.
J Biomech. 2014 Jun 27;47(9):2102-14. doi: 10.1016/j.jbiomech.2013.10.059. Epub 2013 Nov 8.

本文引用的文献

1
Discontinuities in the human bone-PDL-cementum complex.
Biomaterials. 2011 Oct;32(29):7106-17. doi: 10.1016/j.biomaterials.2011.06.021. Epub 2011 Jul 20.
2
The CEJ: a biofilm and calculus trap.
Compend Contin Educ Dent. 2011 Mar;32(2):30, 32-7; quiz 38, 40.
3
Host-pathogen interactions in progressive chronic periodontitis.
J Dent Res. 2011 Oct;90(10):1164-70. doi: 10.1177/0022034511401405. Epub 2011 Apr 6.
4
Mechanical recovery of dentin following remineralization in vitro--an indentation study.
J Biomech. 2011 Jan 4;44(1):176-81. doi: 10.1016/j.jbiomech.2010.09.005.
5
The biomechanical characteristics of the bone-periodontal ligament-cementum complex.
Biomaterials. 2010 Sep;31(25):6635-46. doi: 10.1016/j.biomaterials.2010.05.024. Epub 2010 Jun 11.
7
Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament.
Dent Mater. 2009 Oct;25(10):1285-92. doi: 10.1016/j.dental.2009.03.014. Epub 2009 Jun 27.
8
Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus.
Nat Rev Mol Cell Biol. 2009 Jan;10(1):75-82. doi: 10.1038/nrm2594.
9
Mechanical properties of mineralized collagen fibrils as influenced by demineralization.
J Struct Biol. 2008 Jun;162(3):404-10. doi: 10.1016/j.jsb.2008.02.010. Epub 2008 Mar 31.
10
Effect of sterilization by gamma radiation on nano-mechanical properties of teeth.
Dent Mater. 2008 Aug;24(8):1137-40. doi: 10.1016/j.dental.2008.02.016. Epub 2008 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验