Suppr超能文献

利用人体测量学指标预测胰岛素抵抗:来自大型青少年人群的经验。

Prediction of insulin resistance with anthropometric measures: lessons from a large adolescent population.

机构信息

Department of Psychiatry, NYU School of Medicine, New York, NY, USA.

出版信息

Diabetes Metab Syndr Obes. 2012;5:219-25. doi: 10.2147/DMSO.S33478. Epub 2012 Jul 23.

Abstract

OBJECTIVE

The aim of this study was to describe the minimum number of anthropometric measures that will optimally predict insulin resistance (IR) and to characterize the utility of these measures among obese and nonobese adolescents.

RESEARCH DESIGN AND METHODS

SIX ANTHROPOMETRIC MEASURES (SELECTED FROM THREE CATEGORIES: central adiposity, weight, and body composition) were measured from 1298 adolescents attending two New York City public high schools. Body composition was determined by bioelectric impedance analysis (BIA). The homeostatic model assessment of IR (HOMA-IR), based on fasting glucose and insulin concentrations, was used to estimate IR. Stepwise linear regression analyses were performed to predict HOMA-IR based on the six selected measures, while controlling for age.

RESULTS

The stepwise regression retained both waist circumference (WC) and percentage of body fat (BF%). Notably, BMI was not retained. WC was a stronger predictor of HOMA-IR than BMI was. A regression model using solely WC performed best among the obese II group, while a model using solely BF% performed best among the lean group. Receiver operator characteristic curves showed the WC and BF% model to be more sensitive in detecting IR than BMI, but with less specificity.

CONCLUSION

WC combined with BF% was the best predictor of HOMA-IR. This finding can be attributed partly to the ability of BF% to model HOMA-IR among leaner participants and to the ability of WC to model HOMA-IR among participants who are more obese. BMI was comparatively weak in predicting IR, suggesting that assessments that are more comprehensive and include body composition analysis could increase detection of IR during adolescence, especially among those who are lean, yet insulin-resistant.

摘要

目的

本研究旨在描述最佳预测胰岛素抵抗(IR)的最小数量的人体测量学指标,并描述这些指标在肥胖和非肥胖青少年中的应用。

研究设计与方法

从参加两所纽约市公立高中的 1298 名青少年中测量了 6 项人体测量学指标(选自三个类别:中心性肥胖、体重和身体成分)。身体成分通过生物电阻抗分析(BIA)确定。基于空腹血糖和胰岛素浓度的稳态模型评估胰岛素抵抗(HOMA-IR)用于估计 IR。逐步线性回归分析用于在控制年龄的情况下根据六个选定的指标预测 HOMA-IR。

结果

逐步回归保留了腰围(WC)和体脂肪百分比(BF%)。值得注意的是,BMI 没有保留。WC 是 HOMA-IR 的比 BMI 更好的预测因子。仅使用 WC 的回归模型在肥胖 II 组中表现最佳,而仅使用 BF%的模型在瘦组中表现最佳。接受者操作特征曲线显示,WC 和 BF%模型比 BMI 更敏感地检测 IR,但特异性较低。

结论

WC 与 BF%结合是 HOMA-IR 的最佳预测因子。这一发现部分归因于 BF%在较瘦参与者中建模 HOMA-IR 的能力,以及 WC 在更肥胖参与者中建模 HOMA-IR 的能力。BMI 在预测 IR 方面相对较弱,这表明更全面的评估,包括身体成分分析,可以提高青春期 IR 的检出率,尤其是在那些瘦但胰岛素抵抗的人群中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca5/3422907/5d3a1a304819/dmso-5-219f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验