California NanoSystems Institute, University of California, 570 Westwood Plaza, Los Angeles, California 90095, United States.
J Am Chem Soc. 2012 Sep 26;134(38):15790-804. doi: 10.1021/ja304907c. Epub 2012 Sep 17.
We have developed structure/toxicity relationships for amorphous silica nanoparticles (NPs) synthesized through low-temperature colloidal (e.g., Stöber silica) or high-temperature pyrolysis (e.g., fumed silica) routes. Through combined spectroscopic and physical analyses, we have determined the state of aggregation, hydroxyl concentration, relative proportion of strained and unstrained siloxane rings, and potential to generate hydroxyl radicals for Stöber and fumed silica NPs with comparable primary particle sizes (16 nm in diameter). On the basis of erythrocyte hemolytic assays and assessment of the viability and ATP levels in epithelial and macrophage cells, we discovered for fumed silica an important toxicity relationship to postsynthesis thermal annealing or environmental exposure, whereas colloidal silicas were essentially nontoxic under identical treatment conditions. Specifically, we find for fumed silica a positive correlation of toxicity with hydroxyl concentration and its potential to generate reactive oxygen species (ROS) and cause red blood cell hemolysis. We propose fumed silica toxicity stems from its intrinsic population of strained three-membered rings (3MRs) along with its chainlike aggregation and hydroxyl content. Hydrogen-bonding and electrostatic interactions of the silanol surfaces of fumed silica aggregates with the extracellular plasma membrane cause membrane perturbations sensed by the Nalp3 inflammasome, whose subsequent activation leads to secretion of the cytokine IL-1β. Hydroxyl radicals generated by the strained 3MRs in fumed silica, but largely absent in colloidal silicas, may contribute to the inflammasome activation. Formation of colloidal silica into aggregates mimicking those of fumed silica had no effect on cell viability or hemolysis. This study emphasizes that not all amorphous silicas are created equal and that the unusual toxicity of fumed silica compared to that of colloidal silica derives from its framework and surface chemistry along with its fused chainlike morphology established by high-temperature synthesis (>1300 °C) and rapid thermal quenching.
我们已经开发出了通过低温胶体(例如 Stöber 硅)或高温热解(例如气相二氧化硅)路线合成的无定形二氧化硅纳米颗粒(NPs)的结构/毒性关系。通过结合光谱和物理分析,我们确定了 Stöber 硅和气相二氧化硅 NPs 的聚集状态、羟基浓度、应变和未应变硅氧烷环的相对比例,以及生成羟基自由基的潜力,这些 NPs 的初级粒径相当(直径 16nm)。基于红细胞溶血试验以及对上皮细胞和巨噬细胞活力和 ATP 水平的评估,我们发现对于气相二氧化硅,后合成热退火或环境暴露与其毒性之间存在重要关系,而胶体硅在相同处理条件下基本上是无毒的。具体而言,我们发现对于气相二氧化硅,毒性与其羟基浓度及其生成活性氧物种(ROS)和引起红细胞溶血的潜力呈正相关。我们提出,气相二氧化硅的毒性源于其固有应变的三员环(3MRs)种群以及其链状聚集和羟基含量。气相二氧化硅聚集体的硅醇表面与细胞外质膜的氢键和静电相互作用引起 Nalp3 炎性体感知到的膜扰动,其随后的激活导致细胞因子 IL-1β的分泌。气相二氧化硅中应变的 3MRs 产生的羟基自由基,而在胶体硅中则大量不存在,可能有助于炎性体的激活。将胶体硅形成类似于气相二氧化硅的聚集体的过程对细胞活力或溶血没有影响。这项研究强调了并非所有无定形硅都相同,并且与胶体硅相比,气相二氧化硅的异常毒性源于其框架和表面化学特性,以及由高温合成(>1300°C)和快速热淬火形成的融合链状形态。