Section of Neurobiology and Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA.
J Physiol. 2012 Nov 15;590(22):5563-9. doi: 10.1113/jphysiol.2012.229328. Epub 2012 Aug 28.
Some neurons in the mammalian auditory system are able to detect and report the coincident firing of inputs with remarkable temporal precision. A strong, low-voltage-activated potassium conductance (g(KL)) at the cell body and dendrites gives these neurons sensitivity to the rate of depolarization by EPSPs, allowing neurons to assess the coincidence of the rising slopes of unitary EPSPs. Two groups of neurons in the brain stem, octopus cells in the posteroventral cochlear nucleus and principal cells of the medial superior olive (MSO), extract acoustic information by assessing coincident firing of their inputs over a submillisecond timescale and convey that information at rates of up to 1000 spikes s(-1). Octopus cells detect the coincident activation of groups of auditory nerve fibres by broadband transient sounds, compensating for the travelling wave delay by dendritic filtering, while MSO neurons detect coincident activation of similarly tuned neurons from each of the two ears through separate dendritic tufts. Each makes use of filtering that is introduced by the spatial distribution of inputs on dendrites.
哺乳动物听觉系统中的一些神经元能够以极高的时间精度检测和报告输入的同时激发。细胞体和树突上强的、低电压激活的钾电导(g(KL))使这些神经元对 EPSP 的去极化率敏感,从而使神经元能够评估单位 EPSP 上升斜率的同时性。脑干中有两组神经元,耳蜗核后腹核的章鱼细胞和中内侧橄榄核的主细胞,通过评估亚毫秒时间尺度上输入的同时激发来提取声音信息,并以高达 1000 个 spikes s(-1)的速率传递该信息。章鱼细胞通过宽带瞬态声音检测听觉神经纤维群的同时激活,通过树突滤波补偿行波延迟,而 MSO 神经元通过来自每只耳朵的两个独立的树突簇检测类似调谐的神经元的同时激活。每个神经元都利用输入在树突上的空间分布所引入的滤波。