Suppr超能文献

电子健康记录监测算法有助于发现输血相关的肺并发症。

Electronic health record surveillance algorithms facilitate the detection of transfusion-related pulmonary complications.

机构信息

Mayo Clinic, Rochester, Minnesota 55905, USA.

出版信息

Transfusion. 2013 Jun;53(6):1205-16. doi: 10.1111/j.1537-2995.2012.03886.x. Epub 2012 Aug 31.

Abstract

BACKGROUND

Transfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO) are leading causes of transfusion-related mortality. Notably, poor syndrome recognition and underreporting likely result in an underestimate of their true attributable burden. We aimed to develop accurate electronic health record-based screening algorithms for improved detection of TRALI/transfused acute lung injury (ALI) and TACO.

STUDY DESIGN AND METHODS

This was a retrospective observational study. The study cohort, identified from a previous National Institutes of Health-sponsored prospective investigation, included 223 transfused patients with TRALI, transfused ALI, TACO, or complication-free controls. Optimal case detection algorithms were identified using classification and regression tree (CART) analyses. Algorithm performance was evaluated with sensitivities, specificities, likelihood ratios, and overall misclassification rates.

RESULTS

For TRALI/transfused ALI detection, CART analysis achieved a sensitivity and specificity of 83.9% (95% confidence interval [CI], 74.4%-90.4%) and 89.7% (95% CI, 80.3%-95.2%), respectively. For TACO, the sensitivity and specificity were 86.5% (95% CI, 73.6%-94.0%) and 92.3% (95% CI, 83.4%-96.8%), respectively. Reduced PaO2 /FiO2 ratios and the acquisition of posttransfusion chest radiographs were the primary determinants of case versus control status for both syndromes. Of true-positive cases identified using the screening algorithms (TRALI/transfused ALI, n = 78; TACO, n = 45), only 11 (14.1%) and five (11.1%) were reported to the blood bank by physicians, respectively.

CONCLUSIONS

Electronic screening algorithms have shown good sensitivity and specificity for identifying patients with TRALI/transfused ALI and TACO at our institution. This supports the notion that active electronic surveillance may improve case identification, thereby providing a more accurate understanding of TRALI/transfused ALI and TACO epidemiology.

摘要

背景

输血相关急性肺损伤(TRALI)和输血相关循环超负荷(TACO)是输血相关死亡的主要原因。值得注意的是,由于综合征识别不佳和报告不足,其实际归因负担可能被低估。我们旨在开发基于电子健康记录的准确筛选算法,以提高 TRALI/输血性急性肺损伤(ALI)和 TACO 的检测率。

研究设计和方法

这是一项回顾性观察性研究。研究队列来自先前由美国国立卫生研究院资助的前瞻性研究,包括 223 例输血患者,他们患有 TRALI、输血性 ALI、TACO 或无并发症的对照组。使用分类和回归树(CART)分析确定最佳病例检测算法。通过敏感性、特异性、似然比和总体误分类率评估算法性能。

结果

对于 TRALI/输血性 ALI 检测,CART 分析的敏感性和特异性分别为 83.9%(95%置信区间 [CI],74.4%-90.4%)和 89.7%(95% CI,80.3%-95.2%)。对于 TACO,敏感性和特异性分别为 86.5%(95% CI,73.6%-94.0%)和 92.3%(95% CI,83.4%-96.8%)。较低的 PaO2/FiO2 比值和输血后胸部 X 线片的获取是两种综合征病例与对照状态的主要决定因素。使用筛选算法确定的真阳性病例(TRALI/输血性 ALI,n=78;TACO,n=45)中,仅分别有 11 例(14.1%)和 5 例(11.1%)被医生报告给血库。

结论

在我们机构,电子筛选算法在识别 TRALI/输血性 ALI 和 TACO 患者方面具有良好的敏感性和特异性。这支持了积极的电子监测可能会提高病例识别率的观点,从而更准确地了解 TRALI/输血性 ALI 和 TACO 的流行病学情况。

相似文献

引用本文的文献

2
Machine learning in transfusion medicine: A scoping review.输血医学中的机器学习:一项范围综述。
Transfusion. 2024 Jan;64(1):162-184. doi: 10.1111/trf.17582. Epub 2023 Nov 10.
4
TACO and TRALI: biology, risk factors, and prevention strategies.TACO 和 TRALI:生物学、危险因素和预防策略。
Hematology Am Soc Hematol Educ Program. 2018 Nov 30;2018(1):585-594. doi: 10.1182/asheducation-2018.1.585. Epub 2018 Dec 14.

本文引用的文献

1
Transfusion-related acute lung injury: incidence and risk factors.输血相关急性肺损伤:发生率和危险因素。
Blood. 2012 Feb 16;119(7):1757-67. doi: 10.1182/blood-2011-08-370932. Epub 2011 Nov 23.
2
Transfusion-associated circulatory overload after plasma transfusion.血浆输注后相关性循环超负荷。
Transfusion. 2012 Jan;52(1):160-5. doi: 10.1111/j.1537-2995.2011.03247.x. Epub 2011 Jul 18.
10
Validation of an electronic surveillance system for acute lung injury.急性肺损伤电子监测系统的验证
Intensive Care Med. 2009 Jun;35(6):1018-23. doi: 10.1007/s00134-009-1460-1. Epub 2009 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验