Suppr超能文献

视频序列中含有癫痫性痉挛发作的片段的自动分割。

Automatic segmentation of episodes containing epileptic clonic seizures in video sequences.

机构信息

Foundation Epilepsy Institute of The Netherlands-SEIN, 2103 SW Heemstede, The Netherlands.

出版信息

IEEE Trans Biomed Eng. 2012 Dec;59(12):3379-85. doi: 10.1109/TBME.2012.2215609. Epub 2012 Aug 27.

Abstract

Epilepsy is a neurological disorder characterized by sudden, often unexpected transitions from normal to pathological behavioral states called epileptic seizures. Some of these seizures are accompanied by uncontrolled, often rhythmic movements of body parts when seizure activity propagates to brain areas responsible for the initiation and control of movement. The dynamics of these transitions is, in general, unknown. As a consequence, individuals have to be monitored for long periods in order to obtain sufficient data for adequate diagnosis and to plan therapeutic strategy. Some people may require long-term care in special units to allow for timely intervention in case seizures get out of control. Our goal is to present a method by which a subset of motor seizures can be detected using only remote sensing devices (i.e., not in contact with the subject) such as video cameras. These major motor seizures (MMS) consist of clonic movements and are often precursors of generalized tonic-clonic (convulsive) seizures, sometimes leading to a condition known as status epilepticus, which is an acute life-threatening event. We propose an algorithm based on optical flow, extraction of global group transformation velocities, and band-pass temporal filtering to identify occurrence of clonic movements in video sequences. We show that for a validation set of 72 prerecorded epileptic seizures in 50 people, our method is highly sensitive and specific in detecting video segments containing MMS with clonic movements.

摘要

癫痫是一种神经系统疾病,其特征是突然出现的、通常是意料之外的从正常行为状态向病理行为状态的转变,这种病理行为状态被称为癫痫发作。其中一些发作伴随着不受控制的、通常是有节奏的身体部位运动,当发作活动传播到负责发起和控制运动的大脑区域时,就会发生这种情况。这些转变的动态通常是未知的。因此,为了获得足够的诊断和治疗策略规划数据,个体必须被监测很长一段时间。有些人可能需要在特殊单元中进行长期护理,以便在发作失控时及时进行干预。我们的目标是提出一种方法,仅使用遥感设备(即不与主体接触),如摄像机,就可以检测到一部分运动性癫痫发作。这些主要的运动性癫痫发作(MMS)包括阵挛性运动,通常是全身性强直-阵挛(抽搐性)癫痫发作的前兆,有时会导致一种称为癫痫持续状态的情况,这是一种急性危及生命的事件。我们提出了一种基于光流、全局群组变换速度提取和带通时间滤波的算法,以识别视频序列中阵挛性运动的发生。我们表明,对于 50 个人的 72 个预先录制的癫痫发作的验证集,我们的方法在检测包含阵挛性运动的 MMS 的视频片段时具有很高的敏感性和特异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验