Suppr超能文献

利用多种类型基因组数据的综合分析鉴定复杂疾病相关基因。

Identification of genes for complex diseases using integrated analysis of multiple types of genomic data.

机构信息

Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States of America.

出版信息

PLoS One. 2012;7(9):e42755. doi: 10.1371/journal.pone.0042755. Epub 2012 Sep 5.

Abstract

Various types of genomic data (e.g., SNPs and mRNA transcripts) have been employed to identify risk genes for complex diseases. However, the analysis of these data has largely been performed in isolation. Combining these multiple data for integrative analysis can take advantage of complementary information and thus can have higher power to identify genes (and/or their functions) that would otherwise be impossible with individual data analysis. Due to the different nature, structure, and format of diverse sets of genomic data, multiple genomic data integration is challenging. Here we address the problem by developing a sparse representation based clustering (SRC) method for integrative data analysis. As an example, we applied the SRC method to the integrative analysis of 376821 SNPs in 200 subjects (100 cases and 100 controls) and expression data for 22283 genes in 80 subjects (40 cases and 40 controls) to identify significant genes for osteoporosis (OP). Comparing our results with previous studies, we identified some genes known related to OP risk (e.g., 'THSD4', 'CRHR1', 'HSD11B1', 'THSD7A', 'BMPR1B' 'ADCY10', 'PRL', 'CA8','ESRRA', 'CALM1', 'CALM1', 'SPARC', and 'LRP1'). Moreover, we uncovered novel osteoporosis susceptible genes ('DICER1', 'PTMA', etc.) that were not found previously but play functionally important roles in osteoporosis etiology from existing studies. In addition, the SRC method identified genes can lead to higher accuracy for the diagnosis/classification of osteoporosis subjects when compared with the traditional T-test and Fisher-exact test, which further validates the proposed SRC approach for integrative analysis.

摘要

各种类型的基因组数据(例如,SNP 和 mRNA 转录本)已被用于鉴定复杂疾病的风险基因。然而,这些数据的分析在很大程度上是孤立进行的。将这些多种数据进行整合分析可以利用互补信息,从而可以更有效地识别个体数据分析不可能识别的基因(和/或其功能)。由于不同类型、结构和格式的基因组数据的不同性质,多种基因组数据的整合具有挑战性。在这里,我们通过开发一种基于稀疏表示的聚类(SRC)方法来解决这个问题,用于整合数据分析。例如,我们将 SRC 方法应用于 200 名受试者(100 例和 100 例对照)的 376821 个 SNP 和 80 名受试者(40 例和 40 例对照)的 22283 个基因表达数据的整合分析,以鉴定骨质疏松症(OP)的显著基因。将我们的结果与以前的研究进行比较,我们鉴定了一些已知与 OP 风险相关的基因(例如,'THSD4'、'CRHR1'、'HSD11B1'、'THSD7A'、'BMPR1B'、'ADCY10'、'PRL'、'CA8'、'ESRRA'、'CALM1'、'CALM1'、'SPARC' 和'LRP1')。此外,我们还发现了一些以前没有发现但在现有研究中对骨质疏松症病因学具有重要功能作用的新的骨质疏松症易感基因('DICER1'、'PTMA'等)。此外,与传统的 T 检验和 Fisher 精确检验相比,SRC 方法识别的基因可以提高骨质疏松症患者诊断/分类的准确性,进一步验证了该 SRC 方法在整合分析中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3baa/3434191/24be57c369ee/pone.0042755.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验