Center for Nanomedicine, College of Engineering and Computing, Florida International University, Miami, Florida, United States of America.
PLoS One. 2012;7(9):e44040. doi: 10.1371/journal.pone.0044040. Epub 2012 Sep 5.
This paper for the first time discusses a computational study of using magneto-electric (ME) nanoparticles to artificially stimulate the neural activity deep in the brain. The new technology provides a unique way to couple electric signals in the neural network to the magnetic dipoles in the nanoparticles with the purpose to enable a non-invasive approach. Simulations of the effect of ME nanoparticles for non-invasively stimulating the brain of a patient with Parkinson's Disease to bring the pulsed sequences of the electric field to the levels comparable to those of healthy people show that the optimized values for the concentration of the 20-nm nanoparticles (with the magneto-electric (ME) coefficient of 100 V cm(-1) Oe(-1) in the aqueous solution) is 3 × 10(6) particles/cc, and the frequency of the externally applied 300-Oe magnetic field is 80 Hz.
本文首次探讨了使用磁电(ME)纳米粒子人为刺激大脑深处神经活动的计算研究。这项新技术提供了一种独特的方法,可以将神经网络中的电信号与纳米粒子中的磁偶极子耦合在一起,从而实现非侵入性的方法。模拟 ME 纳米粒子对帕金森病患者大脑进行非侵入性刺激的效果,将电场的脉冲序列带到与健康人相当的水平,结果表明,浓度优化值为 20nm 纳米粒子(在水溶液中的磁电(ME)系数为 100 V cm(-1) Oe(-1))为 3×10(6) 个/cc,外加 300-Oe 磁场的频率为 80Hz。