Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg.
Bioinformatics. 2012 Sep 15;28(18):i451-i457. doi: 10.1093/bioinformatics/bts389.
Assessing functional associations between an experimentally derived gene or protein set of interest and a database of known gene/protein sets is a common task in the analysis of large-scale functional genomics data. For this purpose, a frequently used approach is to apply an over-representation-based enrichment analysis. However, this approach has four drawbacks: (i) it can only score functional associations of overlapping gene/proteins sets; (ii) it disregards genes with missing annotations; (iii) it does not take into account the network structure of physical interactions between the gene/protein sets of interest and (iv) tissue-specific gene/protein set associations cannot be recognized.
To address these limitations, we introduce an integrative analysis approach and web-application called EnrichNet. It combines a novel graph-based statistic with an interactive sub-network visualization to accomplish two complementary goals: improving the prioritization of putative functional gene/protein set associations by exploiting information from molecular interaction networks and tissue-specific gene expression data and enabling a direct biological interpretation of the results. By using the approach to analyse sets of genes with known involvement in human diseases, new pathway associations are identified, reflecting a dense sub-network of interactions between their corresponding proteins.
EnrichNet is freely available at http://www.enrichnet.org.
Natalio.Krasnogor@nottingham.ac.uk, reinhard.schneider@uni.lu or avalencia@cnio.es
Supplementary data are available at Bioinformatics Online.
评估实验得出的基因或蛋白质组与已知基因/蛋白质组数据库之间的功能关联是大规模功能基因组学数据分析中的一项常见任务。为此,一种常用的方法是应用基于过度表达的富集分析。然而,这种方法有四个缺点:(i)它只能评分重叠基因/蛋白质组的功能关联;(ii)它忽略了缺少注释的基因;(iii)它没有考虑到感兴趣的基因/蛋白质组之间的物理相互作用的网络结构;(iv)组织特异性的基因/蛋白质组关联无法被识别。
为了解决这些限制,我们引入了一种综合分析方法和名为 EnrichNet 的网络应用程序。它结合了一种新颖的基于图的统计方法和交互式子网可视化,以实现两个互补的目标:通过利用分子相互作用网络和组织特异性基因表达数据的信息来提高推测的功能基因/蛋白质组关联的优先级,并直接对结果进行生物学解释。通过使用该方法分析已知与人类疾病相关的基因集,我们确定了新的途径关联,反映了它们相应蛋白质之间密集的相互作用子网。
EnrichNet 可在 http://www.enrichnet.org 免费获取。
Natalio.Krasnogor@nottingham.ac.uk、reinhard.schneider@uni.lu 或 avalencia@cnio.es
补充数据可在 Bioinformatics Online 上获得。