Suppr超能文献

糖尿病中胰岛素合成与分泌的调节及胰岛β细胞功能障碍

Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes.

作者信息

Fu Zhuo, Gilbert Elizabeth R, Liu Dongmin

机构信息

Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA.

出版信息

Curr Diabetes Rev. 2013 Jan 1;9(1):25-53.

Abstract

Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5' flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox- 1(PDX-1), MafA, and β-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling- dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes.

摘要

胰腺β细胞功能障碍在1型和2型糖尿病的发病机制中均起重要作用。β细胞产生的胰岛素是代谢的关键调节因子。胰岛素以前胰岛素原的形式合成,然后加工成胰岛素原。胰岛素原随后转化为胰岛素和C肽,并储存在分泌颗粒中,等待按需释放。胰岛素的合成在转录和翻译水平上均受到调控。5'侧翼区域内的顺式作用序列以及包括配对盒基因6(PAX6)、胰腺和十二指肠同源盒-1(PDX-1)、MafA和β-2/神经源性分化1(NeuroD1)在内的反式激活因子调节胰岛素转录,而胰岛素原mRNA及其非翻译区的稳定性控制蛋白质翻译。胰岛素分泌涉及β细胞中的一系列事件,这些事件导致分泌颗粒与质膜融合。胰岛素主要是对葡萄糖作出反应而分泌,而其他营养物质如游离脂肪酸和氨基酸可增强葡萄糖诱导的胰岛素分泌。此外,各种激素,如褪黑素、雌激素、瘦素、生长激素和胰高血糖素样肽-1也调节胰岛素分泌。因此,β细胞是体内的一个代谢枢纽,连接着营养物质代谢和内分泌系统。虽然细胞内[Ca2+]的增加是主要的胰岛素分泌信号,但cAMP信号依赖机制在胰岛素分泌的调节中也至关重要。本文综述了目前关于β细胞如何合成和分泌胰岛素的知识。此外,本综述还提供证据表明,遗传和环境因素可导致高血糖、血脂异常、炎症和自身免疫,从而导致β细胞功能障碍,进而引发糖尿病的发病机制。

相似文献

2
Pax6 is crucial for β-cell function, insulin biosynthesis, and glucose-induced insulin secretion.
Mol Endocrinol. 2012 Apr;26(4):696-709. doi: 10.1210/me.2011-1256. Epub 2012 Mar 8.
3
The activation of the rat insulin gene II by BETA2 and PDX-1 in rat insulinoma cells is repressed by Pax6.
Mol Endocrinol. 2010 Dec;24(12):2331-42. doi: 10.1210/me.2009-0220. Epub 2010 Oct 13.
4
Differentiation of iPSCs into insulin-producing cells via adenoviral transfection of PDX-1, NeuroD1 and MafA.
Diabetes Res Clin Pract. 2014 Jun;104(3):383-92. doi: 10.1016/j.diabres.2014.03.017. Epub 2014 Apr 1.
5
Islet beta-cell-specific MafA transcription requires the 5'-flanking conserved region 3 control domain.
Mol Cell Biol. 2010 Sep;30(17):4234-44. doi: 10.1128/MCB.01396-09. Epub 2010 Jun 28.
7
Glial cell line-derived neurotrophic factor enhances neurogenin3 gene expression and beta-cell proliferation in the developing mouse pancreas.
Am J Physiol Gastrointest Liver Physiol. 2010 Jul;299(1):G283-92. doi: 10.1152/ajpgi.00096.2010. Epub 2010 May 6.
8
Extrinsic factors promoting in vitro differentiation of insulin-secreting cells from human adipose tissue-derived mesenchymal stem cells.
Appl Biochem Biotechnol. 2013 Jun;170(4):962-71. doi: 10.1007/s12010-013-0250-y. Epub 2013 Apr 30.
9
PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration.
Stem Cell Res Ther. 2017 Nov 2;8(1):240. doi: 10.1186/s13287-017-0694-z.
10
High-fat diet induces early-onset diabetes in heterozygous Pax6 mutant mice.
Diabetes Metab Res Rev. 2014 Sep;30(6):467-75. doi: 10.1002/dmrr.2572.

引用本文的文献

1
Assessing mesh size and diffusion of alginate bioinks: A crucial factor for successful bioprinting functional pancreatic islets.
Mater Today Bio. 2025 Aug 5;34:102175. doi: 10.1016/j.mtbio.2025.102175. eCollection 2025 Oct.
2
Polygenic risk scores of fasting insulin and insulin-related traits in a Taiwanese Han population.
Cell Biosci. 2025 Aug 5;15(1):115. doi: 10.1186/s13578-025-01454-2.
3
Modeling Adipokine and Insulin-Mediated Crosstalk Between Adipocytes and Beta Cells Using Flow-Enabled Microfluidics.
Small. 2025 Sep;21(35):e2504686. doi: 10.1002/smll.202504686. Epub 2025 Jul 31.
4
Anionic Lipid Catalyzes the Generation of Cytotoxic Insulin Oligomers.
Biomolecules. 2025 Jul 11;15(7):994. doi: 10.3390/biom15070994.
6
Therapeutic Potential of Infrared and Related Light Therapies in Metabolic Diseases.
Int J Mol Sci. 2025 May 27;26(11):5134. doi: 10.3390/ijms26115134.
7
Oxidative stress and type 2 diabetes: a review of lactic acid bacteria as potential prophylactic and therapeutic interventions.
Food Sci Biotechnol. 2025 Jan 2;34(11):2403-2416. doi: 10.1007/s10068-024-01775-x. eCollection 2025 Jul.
10
Recurrent Hypoglycemic Coma Episodes Associated With Primary Biliary Cirrhosis.
JCEM Case Rep. 2025 Apr 10;3(5):luaf030. doi: 10.1210/jcemcr/luaf030. eCollection 2025 May.

本文引用的文献

1
Genome-wide association studies and type 2 diabetes.
Brief Funct Genomics. 2011 Mar;10(2):52-60. doi: 10.1093/bfgp/elr008.
2
Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss.
Nature. 2010 Apr 22;464(7292):1149-54. doi: 10.1038/nature08894. Epub 2010 Apr 4.
3
The role of innate immune pathways in type 1 diabetes pathogenesis.
Curr Opin Endocrinol Diabetes Obes. 2010 Apr;17(2):126-30. doi: 10.1097/MED.0b013e3283372819.
5
Mitochondria and diabetes mellitus: untangling a conflictive relationship?
J Inherit Metab Dis. 2009 Dec;32(6):684-698. doi: 10.1007/s10545-009-1263-0. Epub 2009 Oct 11.
6
Glucolipotoxicity of the pancreatic beta cell.
Biochim Biophys Acta. 2010 Mar;1801(3):289-98. doi: 10.1016/j.bbalip.2009.08.006. Epub 2009 Aug 26.
7
Critical roles for the TSC-mTOR pathway in β-cell function.
Am J Physiol Endocrinol Metab. 2009 Nov;297(5):E1013-22. doi: 10.1152/ajpendo.00262.2009. Epub 2009 Aug 18.
8
Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes.
Nat Rev Drug Discov. 2009 May;8(5):369-85. doi: 10.1038/nrd2782. Epub 2009 Apr 14.
9
Late developmental plasticity in the T helper 17 lineage.
Immunity. 2009 Jan 16;30(1):92-107. doi: 10.1016/j.immuni.2008.11.005.
10
Dysrulation of T cell peripheral tolerance in type 1 diabetes.
Adv Immunol. 2008;100:125-49. doi: 10.1016/S0065-2776(08)00805-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验