Department for Orthopaedic, Trauma and Reconstructive Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Clin Hemorheol Microcirc. 2012;52(2-4):325-36. doi: 10.3233/CH-2012-1608.
Degradable polymers with a tailorable degradation rate might be promising candidate materials for biomaterial-based cartilage repair. In view of the poor intrinsic healing capability of cartilage, implantation of autologous chondrocytes seeded on a biocompatible slow degrading polymer might be an encouraging approach to improve cartilage repair in the future. This study was undertaken to test if the fiber orientation (random versus aligned) of two different degradable polymers and a polymer intended for long term applications could influence primary articular chondrocytes growth and ultrastructure. A degradable copoly(ether)esterurethane (PDC) was synthesized via co-condensation of poly(p-dioxanone)diol and poly(ε-caprolactone)diol using an aliphatic diisocyanate as linker. Poly(p-dioxanone) (PPDO) was applied as commercially available degradable polymer, while polyetherimide (PEI) was chosen as biomaterial enabling surface functionalization. The fibrous scaffolds of PDC and PPDO were obtained by electrospinning using 1,1,1,3,3,3 hexafluoro-2-propanol (HFP), while for PEI dimethyl acetamide (DMAc) was applied as solvent. Primary porcine articular chondrocytes were seeded at different cell densities on the fibrous polymer scaffolds and analyzed for viability (fluorescein diacetate/ethidiumbromide staining), for type II collagen synthesis (immunolabelling), ultrastructure and orientation on the fibers (SEM: scanning electron microscopy). Vital chondrocytes adhered on all electrospun scaffolds irrespective of random and aligned topologies. In addition, the chondrocytes produced the cartilage-specific type II collagen on all tested polymer topologies suggesting their differentiated functions. SEM revealed an almost flattened chondrocytes shape on scaffolds with random fiber orientation: whereby chondrocytes growth remained mainly restricted to the scaffold surface. On aligned fibers the chondrocytes exhibited a more spindle-shaped morphology with rougher cell surfaces but only a minority of the cells aligned according to the fibers. As a next step the reduction of the fiber diameter of electrospun scaffolds should be addressed as an important parameter to mimic cartilage ECM structure.
可降解聚合物具有可调节的降解速率,可能是生物材料基软骨修复的有前途的候选材料。鉴于软骨的内在愈合能力差,将自体软骨细胞种植在生物相容性的缓慢降解聚合物上可能是一种有前途的方法,可以改善未来的软骨修复。本研究旨在测试两种不同的可降解聚合物和一种用于长期应用的聚合物的纤维取向(随机与定向)是否会影响原代关节软骨细胞的生长和超微结构。通过聚(对二氧环己酮)二醇和聚(ε-己内酯)二醇的缩合反应,使用脂肪族二异氰酸酯作为连接剂,合成了可降解共聚(醚)酯尿烷(PDC)。聚(对二氧环己酮)(PPDO)被用作商业上可用的可降解聚合物,而聚醚酰亚胺(PEI)被选为可实现表面功能化的生物材料。PDC 和 PPDO 的纤维支架通过静电纺丝获得,使用 1,1,1,3,3,3 六氟-2-丙醇(HFP),而对于 PEI,二甲基乙酰胺(DMAc)被用作溶剂。将原代猪关节软骨细胞以不同的细胞密度接种在纤维聚合物支架上,并分析其活力(荧光二乙酸/溴化乙锭染色)、II 型胶原合成(免疫标记)、纤维上的超微结构和取向(SEM:扫描电子显微镜)。无论拓扑结构是随机的还是定向的,活软骨细胞都能附着在所有静电纺丝支架上。此外,在所有测试的聚合物拓扑结构上,软骨细胞都产生了软骨特异性的 II 型胶原,表明它们具有分化功能。SEM 显示,在具有随机纤维取向的支架上,软骨细胞呈现出几乎扁平的形状:软骨细胞的生长主要局限于支架表面。在定向纤维上,软骨细胞呈现出更纺锤形的形态,细胞表面更粗糙,但只有少数细胞沿纤维排列。下一步应该解决静电纺丝支架纤维直径的减小问题,这是模拟软骨 ECM 结构的一个重要参数。