Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
BMC Genomics. 2012 Sep 19;13:496. doi: 10.1186/1471-2164-13-496.
Mitochondrial genomes comprise a small but critical component of the total DNA in eukaryotic organisms. They encode several key proteins for the cell's major energy producing apparatus, the mitochondrial respiratory chain. Additionally, their nucleotide and amino acid sequences are of great utility as markers for systematics, molecular ecology and forensics. Their characterization through nucleotide sequencing is a fundamental starting point in mitogenomics. Methods to amplify complete mitochondrial genomes rapidly and efficiently from microgram quantities of tissue of single individuals are, however, not always available. Here we validate two approaches, which combine long-PCR with Roche 454 pyrosequencing technology, to obtain two complete mitochondrial genomes from individual amphibian species.
We obtained two new xenopus frogs (Xenopus borealis and X. victorianus) complete mitochondrial genome sequences by means of long-PCR followed by 454 of individual genomes (approach 1) or of multiple pooled genomes (approach 2), the mean depth of coverage per nucleotide was 9823 and 186, respectively. We also characterised and compared the new mitogenomes against their sister taxa; X. laevis and Silurana tropicalis, two of the most intensely studied amphibians. Our results demonstrate how our approaches can be used to obtain complete amphibian mitogenomes with depths of coverage that far surpass traditional primer-walking strategies, at either the same cost or less. Our results also demonstrate: that the size, gene content and order are the same among xenopus mitogenomes and that S. tropicalis form a separate clade to the other xenopus, among which X. laevis and X. victorianus were most closely related. Nucleotide and amino acid diversity was found to vary across the xenopus mitogenomes, with the greatest diversity observed in the Complex 1 gene nad4l and the least diversity observed in Complex 4 genes (cox1-3). All protein-coding genes were shown to be under strong negative (purifying selection), with genes under the strongest pressure (Complex 4) also being the most highly expressed, highlighting their potentially crucial functions in the mitochondrial respiratory chain.
Next generation sequencing of long-PCR amplicons using single taxon or multi-taxon approaches enabled two new species of Xenopus mtDNA to be fully characterized. We anticipate our complete mitochondrial genome amplification methods to be applicable to other amphibians, helpful for identifying the most appropriate markers for differentiating species, populations and resolving phylogenies, a pressing need since amphibians are undergoing drastic global decline. Our mtDNAs also provide templates for conserved primer design and the assembly of RNA and DNA reads following high throughput "omic" techniques such as RNA- and ChIP-seq. These could help us better understand how processes such mitochondrial replication and gene expression influence xenopus growth and development, as well as how they evolved and are regulated.
线粒体基因组是真核生物总 DNA 中的一小部分,但却是至关重要的组成部分。它们编码了几种关键的蛋白质,这些蛋白质是细胞主要能量产生装置——线粒体呼吸链的重要组成部分。此外,它们的核苷酸和氨基酸序列作为系统发育、分子生态学和法医学的标记具有很大的用途。通过核苷酸测序对其进行特征描述是线粒体基因组学的一个基本起点。然而,并非总是能够快速有效地从单个个体的微克组织中扩增完整的线粒体基因组。在这里,我们验证了两种方法,这两种方法结合了长 PCR 和罗氏 454 焦磷酸测序技术,从单个基因组(方法 1)或多个基因组(方法 2)中获得了两种完整的非洲爪蟾线粒体基因组。
我们通过长 PCR 并结合 454 测序获得了两种新的非洲爪蟾(Xenopus borealis 和 X. victorianus)的完整线粒体基因组序列,单个基因组(方法 1)或多个基因组(方法 2)的平均覆盖率分别为 9823 和 186。我们还对新的线粒体基因组与姐妹分类群(最有研究价值的两种非洲爪蟾,即 X. laevis 和 Silurana tropicalis)进行了特征描述和比较。我们的结果表明,我们的方法如何能够以远远超过传统引物步行策略的覆盖深度获得完整的两栖动物线粒体基因组,无论是在相同的成本或更少的成本。我们的结果还表明,非洲爪蟾线粒体基因组之间的大小、基因内容和顺序相同,而 Silurana tropicalis 与其他非洲爪蟾形成了一个单独的分支,其中 X. laevis 和 X. victorianus 最为密切相关。在非洲爪蟾线粒体基因组中发现核苷酸和氨基酸多样性存在差异,复合物 1 基因 nad4l 的多样性最大,复合物 4 基因(cox1-3)的多样性最小。所有的蛋白质编码基因都受到强烈的负选择(净化选择),受到最强压力的基因(复合物 4)也是表达最高的基因,这突出了它们在线粒体呼吸链中的潜在关键功能。
使用单分类群或多分类群方法对长 PCR 扩增子进行下一代测序,使两种新的非洲爪蟾 mtDNA 能够得到全面的特征描述。我们预计我们的完整线粒体基因组扩增方法将适用于其他两栖动物,有助于确定区分物种、种群和解决系统发育的最合适标记,这是一个紧迫的需求,因为两栖动物正在经历全球急剧下降。我们的 mtDNA 还为保守引物设计提供了模板,并为 RNA 和 DNA 读取的组装提供了帮助,这些 RNA 和 DNA 读取是通过高通量“组学”技术(如 RNA 和 ChIP-seq)获得的。这有助于我们更好地了解线粒体复制和基因表达如何影响非洲爪蟾的生长和发育,以及它们是如何进化和受到调控的。