Zuo Xiao-Cong, Yuan Hong, Zhang Bi-Kui, Ng Chee M, Barrett Jeff S, Yang Guo-Ping, Huang Zhi-Jun, Pei Qi, Guo Ren, Zhou Ya-Nan, Jing Ning-Ning, Di Wu
The Third Xiangya Hospital of Central South University, Changsha 410013, China.
Yao Xue Xue Bao. 2012 Jul;47(7):941-6.
Reasonable sampling scheme is the important basis for establishing reliable population pharmacokinetic model. It is an effective method for estimation of population pharmacokinetic parameters with sparse data to perform population pharmacokinetic analysis using the nonlinear mixed-effects models. We designed the sampling scheme for amlodipine based on D-optimal sampling strategy and Bayesian estimation method. First, optimized sample scenarios were designed using WinPOPT software according to the aim, dosage regimen and visit schedule of the clinical study protocol, and the amlodipine population model reported by Rohatagi et al. Second, we created a NONMEM-formatted dataset (n = 400) for each sample scenario via Monte Carlo simulation. Third, the estimation of amlodipine pharmacokinetic parameters (clearance (CL/F), volume (V/F) and Ka) was based on the simulation results. All modeling and simulation exercises were conducted with NONMEM version 7.2. Finally, the accuracy and precision of the estimated parameters were evaluated using the mean prediction error (MPE) and the mean absolute error (MAPE), respectively. Among the 6 schemes, schemes 6 and 3 have good accuracy and precision. MPE is 0.1% for scheme 6 and -0.6% for scheme 3, respectively. MAPE is 0.7% for both schemes. There is no significant difference in MPE and MAPE of volume among them. Therefore, we select scheme 3 as the final sample scenario because it has good accuracy and precision and less sample points. This research aims to provide scientific and effective sampling scheme for population pharmacokinetic (PK) study of amlodipine in patients with renal impairment and hypertension, provide a scientific method for an optimum design in clinical population PK/PD (pharmacodynamics) research.
合理的抽样方案是建立可靠的群体药代动力学模型的重要基础。使用非线性混合效应模型进行群体药代动力学分析是利用稀疏数据估计群体药代动力学参数的有效方法。我们基于D-最优抽样策略和贝叶斯估计方法设计了氨氯地平的抽样方案。首先,根据临床研究方案的目的、给药方案和访视计划,以及Rohatagi等人报道的氨氯地平群体模型,使用WinPOPT软件设计优化的样本方案。其次,通过蒙特卡洛模拟为每个样本方案创建一个NONMEM格式的数据集(n = 400)。第三,基于模拟结果对氨氯地平的药代动力学参数(清除率(CL/F)、体积(V/F)和Ka)进行估计。所有建模和模拟练习均使用NONMEM 7.2版进行。最后,分别使用平均预测误差(MPE)和平均绝对误差(MAPE)评估估计参数的准确性和精密度。在这6种方案中,方案6和方案3具有良好的准确性和精密度。方案6的MPE为0.1%,方案3的MPE为-0.6%。两种方案的MAPE均为0.7%。它们之间体积的MPE和MAPE没有显著差异。因此,我们选择方案3作为最终的样本方案,因为它具有良好的准确性和精密度且样本点较少。本研究旨在为肾功能损害和高血压患者氨氯地平的群体药代动力学(PK)研究提供科学有效的抽样方案,为临床群体PK/PD(药效学)研究的优化设计提供科学方法。