Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.
Phys Rev Lett. 2012 Jun 8;108(23):230401. doi: 10.1103/PhysRevLett.108.230401. Epub 2012 Jun 6.
I propose quantum versions of the Ziv-Zakai bounds as alternatives to the widely used quantum Cramér-Rao bounds for quantum parameter estimation. From a simple form of the proposed bounds, I derive both a Heisenberg error limit that scales with the average energy and a limit similar to the quantum Cramér-Rao bound that scales with the energy variance. These results are further illustrated by applying the bound to a few examples of optical phase estimation, which show that a quantum Ziv-Zakai bound can be much higher and thus tighter than a quantum Cramér-Rao bound for states with highly non-gaussian photon-number statistics in certain regimes and also stay close to the latter where the latter is expected to be tight.
我提出了量子 Ziv-Zakai 界作为量子参数估计中广泛使用的量子 Cramér-Rao 界的替代方法。从所提出的界的一个简单形式中,我推导出了与平均能量成比例的海森堡误差极限和类似于量子 Cramér-Rao 界的与能量方差成比例的极限。通过将该界应用于一些光学相位估计的例子进一步说明了这些结果,这些例子表明在某些情况下,对于具有高度非高斯光子数统计的状态,量子 Ziv-Zakai 界可以比量子 Cramér-Rao 界高得多,因此更严格,并且在后者预计紧密的情况下也接近后者。