Suppr超能文献

评估城市温度对死亡率影响的时空模型还是时间序列模型?

Spatiotemporal model or time series model for assessing city-wide temperature effects on mortality?

机构信息

School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.

出版信息

Environ Res. 2013 Jan;120:55-62. doi: 10.1016/j.envres.2012.09.001. Epub 2012 Sep 29.

Abstract

Most studies examining the temperature-mortality association in a city used temperatures from one site or the average from a network of sites. This may cause measurement error as temperature varies across a city due to effects such as urban heat islands. We examined whether spatiotemporal models using spatially resolved temperatures produced different associations between temperature and mortality compared with time series models that used non-spatial temperatures. We obtained daily mortality data in 163 areas across Brisbane city, Australia from 2000 to 2004. We used ordinary kriging to interpolate spatial temperature variation across the city based on 19 monitoring sites. We used a spatiotemporal model to examine the impact of spatially resolved temperatures on mortality. Also, we used a time series model to examine non-spatial temperatures using a single site and the average temperature from three sites. We used squared Pearson scaled residuals to compare model fit. We found that kriged temperatures were consistent with observed temperatures. Spatiotemporal models using kriged temperature data yielded slightly better model fit than time series models using a single site or the average of three sites' data. Despite this better fit, spatiotemporal and time series models produced similar associations between temperature and mortality. In conclusion, time series models using non-spatial temperatures were equally good at estimating the city-wide association between temperature and mortality as spatiotemporal models.

摘要

大多数研究在城市中检查温度-死亡率关系时,使用一个地点的温度或地点网络的平均值。由于城市热岛等影响,温度在城市中会发生变化,这可能会导致测量误差。我们研究了使用空间分辨率温度的时空模型与使用非空间温度的时间序列模型相比,在温度与死亡率之间产生的关联是否不同。我们从 2000 年至 2004 年在澳大利亚布里斯班市的 163 个地区获得了每日死亡率数据。我们使用普通克里金法根据 19 个监测点来插值整个城市的空间温度变化。我们使用时空模型来研究空间分辨率温度对死亡率的影响。此外,我们使用时间序列模型来研究非空间温度,使用单个地点和三个地点的平均温度。我们使用平方 Pearson 标准化残差来比较模型拟合度。我们发现克里金温度与观测温度一致。使用克里金温度数据的时空模型比使用单个地点或三个地点平均值的数据的时间序列模型的模型拟合度稍好。尽管拟合度更好,但时空模型和时间序列模型在温度与死亡率之间产生了相似的关联。总之,使用非空间温度的时间序列模型在估计温度与死亡率之间的全市关联方面与时空模型同样有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验