LIFL UMR CNRS 8022 Université Lille 1 and INRIA Lille Nord Europe, Villeneuve d'Ascq cedex, France.
J Comput Aided Mol Des. 2012 Oct;26(10):1187-94. doi: 10.1007/s10822-012-9608-4. Epub 2012 Sep 29.
Bacteria and fungi use a set of enzymes called nonribosomal peptide synthetases to provide a wide range of natural peptides displaying structural and biological diversity. So, nonribosomal peptides (NRPs) are the basis for some efficient drugs. While discovering new NRPs is very desirable, the process of identifying their biological activity to be used as drugs is a challenge. In this paper, we present a novel peptide fingerprint based on monomer composition (MCFP) of NRPs. MCFP is a novel method for obtaining a representative description of NRP structures from their monomer composition in fingerprint form. Experiments with Norine NRPs database and MCFP show high prediction accuracy (>93 %). Also a high recall rate (>82 %) is obtained when MCFP is used for screening NRPs database. From this study it appears that our fingerprint, built from monomer composition, allows an effective screening and prediction of biological activities of NRPs database.
细菌和真菌使用一组称为非核糖体肽合成酶的酶来提供广泛的展示结构和生物多样性的天然肽。因此,非核糖体肽(NRP)是一些高效药物的基础。虽然发现新的 NRP 是非常可取的,但识别其生物活性并将其用作药物的过程是一个挑战。在本文中,我们提出了一种基于非核糖体肽单体组成(MCFP)的新型肽指纹图谱。MCFP 是一种从其单体组成以指纹形式获得 NRP 结构代表性描述的新方法。使用 Norine NRP 数据库和 MCFP 的实验表明,预测精度非常高(>93%)。当 MCFP 用于筛选 NRP 数据库时,也获得了高召回率(>82%)。从这项研究中可以看出,我们的指纹图谱由单体组成构建,允许对 NRP 数据库的生物活性进行有效筛选和预测。