Division of Musculoskeletal Section, Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, S-056, Stanford, CA 94305, USA.
J Digit Imaging. 2013 Aug;26(4):709-13. doi: 10.1007/s10278-012-9531-1.
Natural language processing (NLP) techniques to extract data from unstructured text into formal computer representations are valuable for creating robust, scalable methods to mine data in medical documents and radiology reports. As voice recognition (VR) becomes more prevalent in radiology practice, there is opportunity for implementing NLP in real time for decision-support applications such as context-aware information retrieval. For example, as the radiologist dictates a report, an NLP algorithm can extract concepts from the text and retrieve relevant classification or diagnosis criteria or calculate disease probability. NLP can work in parallel with VR to potentially facilitate evidence-based reporting (for example, automatically retrieving the Bosniak classification when the radiologist describes a kidney cyst). For these reasons, we developed and validated an NLP system which extracts fracture and anatomy concepts from unstructured text and retrieves relevant bone fracture knowledge. We implement our NLP in an HTML5 web application to demonstrate a proof-of-concept feedback NLP system which retrieves bone fracture knowledge in real time.
自然语言处理(NLP)技术可将非结构化文本中的数据提取到正式的计算机表示中,对于创建强大、可扩展的方法来挖掘医学文档和放射学报告中的数据非常有价值。随着语音识别(VR)在放射学实践中变得越来越普遍,有机会在实时环境中为决策支持应用程序(如上下文感知信息检索)实施 NLP。例如,当放射科医生口述报告时,NLP 算法可以从文本中提取概念,并检索相关的分类或诊断标准,或计算疾病的概率。NLP 可以与 VR 并行工作,从而有可能促进基于证据的报告(例如,当放射科医生描述肾脏囊肿时,自动检索 Bosniak 分类)。出于这些原因,我们开发并验证了一种 NLP 系统,该系统可从非结构化文本中提取骨折和解剖概念,并检索相关的骨折知识。我们在 HTML5 网络应用程序中实现了我们的 NLP,以展示一个实时检索骨折知识的概念验证反馈 NLP 系统。