Suppr超能文献

利用自然语言处理自动获取骨折知识。

Automatic retrieval of bone fracture knowledge using natural language processing.

机构信息

Division of Musculoskeletal Section, Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, S-056, Stanford, CA 94305, USA.

出版信息

J Digit Imaging. 2013 Aug;26(4):709-13. doi: 10.1007/s10278-012-9531-1.

Abstract

Natural language processing (NLP) techniques to extract data from unstructured text into formal computer representations are valuable for creating robust, scalable methods to mine data in medical documents and radiology reports. As voice recognition (VR) becomes more prevalent in radiology practice, there is opportunity for implementing NLP in real time for decision-support applications such as context-aware information retrieval. For example, as the radiologist dictates a report, an NLP algorithm can extract concepts from the text and retrieve relevant classification or diagnosis criteria or calculate disease probability. NLP can work in parallel with VR to potentially facilitate evidence-based reporting (for example, automatically retrieving the Bosniak classification when the radiologist describes a kidney cyst). For these reasons, we developed and validated an NLP system which extracts fracture and anatomy concepts from unstructured text and retrieves relevant bone fracture knowledge. We implement our NLP in an HTML5 web application to demonstrate a proof-of-concept feedback NLP system which retrieves bone fracture knowledge in real time.

摘要

自然语言处理(NLP)技术可将非结构化文本中的数据提取到正式的计算机表示中,对于创建强大、可扩展的方法来挖掘医学文档和放射学报告中的数据非常有价值。随着语音识别(VR)在放射学实践中变得越来越普遍,有机会在实时环境中为决策支持应用程序(如上下文感知信息检索)实施 NLP。例如,当放射科医生口述报告时,NLP 算法可以从文本中提取概念,并检索相关的分类或诊断标准,或计算疾病的概率。NLP 可以与 VR 并行工作,从而有可能促进基于证据的报告(例如,当放射科医生描述肾脏囊肿时,自动检索 Bosniak 分类)。出于这些原因,我们开发并验证了一种 NLP 系统,该系统可从非结构化文本中提取骨折和解剖概念,并检索相关的骨折知识。我们在 HTML5 网络应用程序中实现了我们的 NLP,以展示一个实时检索骨折知识的概念验证反馈 NLP 系统。

相似文献

1
Automatic retrieval of bone fracture knowledge using natural language processing.
J Digit Imaging. 2013 Aug;26(4):709-13. doi: 10.1007/s10278-012-9531-1.
3
Natural language processing of radiology reports for identification of skeletal site-specific fractures.
BMC Med Inform Decis Mak. 2019 Apr 4;19(Suppl 3):73. doi: 10.1186/s12911-019-0780-5.
4
Automatic abstraction of imaging observations with their characteristics from mammography reports.
J Am Med Inform Assoc. 2015 Apr;22(e1):e81-92. doi: 10.1136/amiajnl-2014-003009. Epub 2014 Oct 28.
5
Natural Language Processing in Radiology: A Systematic Review.
Radiology. 2016 May;279(2):329-43. doi: 10.1148/radiol.16142770.
7
Information extraction from multi-institutional radiology reports.
Artif Intell Med. 2016 Jan;66:29-39. doi: 10.1016/j.artmed.2015.09.007. Epub 2015 Oct 3.
8
Use of Radcube for extraction of finding trends in a large radiology practice.
J Digit Imaging. 2009 Dec;22(6):629-40. doi: 10.1007/s10278-008-9128-x. Epub 2008 Jun 10.
9
Using automatically extracted information from mammography reports for decision-support.
J Biomed Inform. 2016 Aug;62:224-31. doi: 10.1016/j.jbi.2016.07.001. Epub 2016 Jul 4.
10
Extracting information on pneumonia in infants using natural language processing of radiology reports.
J Biomed Inform. 2005 Aug;38(4):314-21. doi: 10.1016/j.jbi.2005.02.003. Epub 2005 Mar 30.

引用本文的文献

1
A systematic review of natural language processing applications in Trauma & Orthopaedics.
Bone Jt Open. 2025 Mar 5;6(3):264-274. doi: 10.1302/2633-1462.63.BJO-2024-0081.R1.
2
Artificial intelligence in musculoskeletal applications: a primer for radiologists.
Diagn Interv Radiol. 2025 Mar 3;31(2):89-101. doi: 10.4274/dir.2024.242830. Epub 2024 Aug 19.
3
A Review on the Use of Artificial Intelligence in Fracture Detection.
Cureus. 2024 Apr 16;16(4):e58364. doi: 10.7759/cureus.58364. eCollection 2024 Apr.
4
Theory of radiologist interaction with instant messaging decision support tools: A sequential-explanatory study.
PLOS Digit Health. 2024 Feb 26;3(2):e0000297. doi: 10.1371/journal.pdig.0000297. eCollection 2024 Feb.
5
Extracting cancer concepts from clinical notes using natural language processing: a systematic review.
BMC Bioinformatics. 2023 Oct 29;24(1):405. doi: 10.1186/s12859-023-05480-0.
6
The promise and limitations of artificial intelligence in musculoskeletal imaging.
Front Radiol. 2023 Aug 7;3:1242902. doi: 10.3389/fradi.2023.1242902. eCollection 2023.
7
Approach to the Patient With Bone Fracture: Making the First Fracture the Last.
J Clin Endocrinol Metab. 2023 Nov 17;108(12):3345-3352. doi: 10.1210/clinem/dgad345.
9
Natural Language Processing of Radiology Reports to Detect Complications of Ischemic Stroke.
Neurocrit Care. 2022 Aug;37(Suppl 2):291-302. doi: 10.1007/s12028-022-01513-3. Epub 2022 May 9.
10
Overview of Noninterpretive Artificial Intelligence Models for Safety, Quality, Workflow, and Education Applications in Radiology Practice.
Radiol Artif Intell. 2022 Feb 2;4(2):e210114. doi: 10.1148/ryai.210114. eCollection 2022 Mar.

本文引用的文献

1
Practical examples of natural language processing in radiology.
J Am Coll Radiol. 2011 Dec;8(12):872-4. doi: 10.1016/j.jacr.2011.09.010.
2
Automated detection of critical results in radiology reports.
J Digit Imaging. 2012 Feb;25(1):30-6. doi: 10.1007/s10278-011-9426-6.
4
Informatics in radiology: RADTF: a semantic search-enabled, natural language processor-generated radiology teaching file.
Radiographics. 2010 Nov;30(7):2039-48. doi: 10.1148/rg.307105083. Epub 2010 Aug 26.
5
Evaluation of negation and uncertainty detection and its impact on precision and recall in search.
J Digit Imaging. 2011 Apr;24(2):234-42. doi: 10.1007/s10278-009-9250-4. Epub 2009 Nov 10.
6
Recommendations for additional imaging in radiology reports: multifactorial analysis of 5.9 million examinations.
Radiology. 2009 Nov;253(2):453-61. doi: 10.1148/radiol.2532090200. Epub 2009 Aug 25.
7
Extraction of recommendation features in radiology with natural language processing: exploratory study.
AJR Am J Roentgenol. 2008 Aug;191(2):313-20. doi: 10.2214/AJR.07.3508.
8
Voice recognition: ready for prime time?
J Am Coll Radiol. 2007 Oct;4(10):667-9; discussion 670-1. doi: 10.1016/j.jacr.2007.03.020.
9
Voice recognition dictation: radiologist as transcriptionist.
J Digit Imaging. 2008 Dec;21(4):384-9. doi: 10.1007/s10278-007-9039-2.
10
Automated computer-assisted categorization of radiology reports.
AJR Am J Roentgenol. 2005 Feb;184(2):687-90. doi: 10.2214/ajr.184.2.01840687.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验