Suppr超能文献

motif 参与大肠杆菌转录网络的基因。

Motif Participation by Genes in E. coli Transcriptional Networks.

机构信息

Environmental Laboratory, US Army Engineer Research and Development Center Vicksburg, MS, USA.

出版信息

Front Physiol. 2012 Sep 24;3:357. doi: 10.3389/fphys.2012.00357. eCollection 2012.

Abstract

Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks' ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and man-made networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium E. coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks.

摘要

模体是遗传网络中基因之间反复出现的连接模式,其出现的频率高于具有相同度数序列的随机网络。尽管某些三节点模体(如前馈环)的丰度与网络能够容忍基因表达适度中断的能力呈正相关,但对于参与多个模体的单个基因的连通性知之甚少。我们使用细菌大肠杆菌的转录网络,通过从其最大连通网络组件中重建参与前馈环模体的基因的分布来研究这一特征。我们将这些模体参与分布与使用许多生物和人为网络所采用的优先连接机制构建的模型网络获得的分布进行对比。我们报告说,尽管这些模型网络中的一些支持与从细菌大肠杆菌获得的定性相似的模体参与分布,但节点支持前馈环模体的概率可能会受到网络中少数几个主转录调节剂的强烈影响。从这些分析中,我们得出结论,这种主调节剂可能是描述转录调控网络中前馈环模体之间耦合的关键因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7fa/3457071/bcfc32af1823/fphys-03-00357-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验