Suppr超能文献

策略使用的异质性在爱荷华赌博任务中:赢留输变和强化学习模型的比较。

Heterogeneity of strategy use in the Iowa gambling task: a comparison of win-stay/lose-shift and reinforcement learning models.

机构信息

Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843-4235, USA.

出版信息

Psychon Bull Rev. 2013 Apr;20(2):364-71. doi: 10.3758/s13423-012-0324-9.

Abstract

The Iowa gambling task (IGT) has been used in numerous studies, often to examine decision-making performance in different clinical populations. Reinforcement learning (RL) models such as the expectancy valence (EV) model have often been used to characterize choice behavior in this work, and accordingly, parameter differences from these models have been used to examine differences in decision-making processes between different populations. These RL models assume a strategy whereby participants incrementally update the expected rewards for each option and probabilistically select options with higher expected rewards. Here we show that a formal model that assumes a win-stay/lose-shift (WSLS) strategy--which is sensitive only to the outcome of the previous choice--provides the best fit to IGT data from about half of our sample of healthy young adults, and that a prospect valence learning (PVL) model that utilizes a decay reinforcement learning rule provides the best fit to the other half of the data. Further analyses suggested that the better fits of the WSLS model to many participants' data were not due to an enhanced ability of the WSLS model to mimic the RL strategy assumed by the PVL and EV models. These results suggest that WSLS is a common strategy in the IGT and that both heuristic-based and RL-based models should be used to inform decision-making behavior in the IGT and similar choice tasks.

摘要

爱荷华赌博任务(IGT)已被广泛应用于许多研究中,常用于评估不同临床人群的决策表现。期望价值(EV)模型等强化学习(RL)模型常用于描述该工作中的选择行为,因此,这些模型的参数差异被用于检查不同人群之间决策过程的差异。这些 RL 模型假设一种策略,即参与者逐步更新每个选项的预期奖励,并以概率选择具有更高预期奖励的选项。在这里,我们表明,一种假设赢留输变(WSLS)策略的正式模型——该策略仅对先前选择的结果敏感——最适合我们健康年轻成年人样本的一半左右的 IGT 数据,并且利用衰减强化学习规则的预期价值学习(PVL)模型最适合另一半数据。进一步的分析表明,WSLS 模型对许多参与者数据的更好拟合并不是由于 WSLS 模型能够增强模仿 PVL 和 EV 模型所假设的 RL 策略的能力。这些结果表明,WSLS 是 IGT 中的一种常见策略,并且应该使用启发式和基于 RL 的模型来为 IGT 和类似选择任务中的决策行为提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验