Graduate School of EEWS (WCU), and NanoCentury KI, KAIST, Daejeon 305-701, South Korea.
Nano Lett. 2012 Nov 14;12(11):5761-8. doi: 10.1021/nl303072d. Epub 2012 Oct 15.
Recent progress in colloidal synthesis of nanoparticles with well-controlled size, shape, and composition, together with development of in situ surface science characterization tools, such as ambient pressure X-ray photoelectron spectroscopy (APXPS), has generated new opportunities to unravel the surface structure of working catalysts. We report an APXPS study of Ru nanoparticles to investigate catalytically active species on Ru nanoparticles under oxidizing, reducing, and CO oxidation reaction conditions. The 2.8 and 6 nm Ru nanoparticle model catalysts were synthesized in the presence of poly(vinyl pyrrolidone) polymer capping agent and deposited onto a flat Si support as two-dimensional arrays using the Langmuir-Blodgett deposition technique. Mild oxidative and reductive characteristics indicate the formation of surface oxide on the Ru nanoparticles, the thickness of which is found to be dependent on nanoparticle size. The larger 6 nm Ru nanoparticles were oxidized to a smaller extent than the smaller Ru 2.8 nm nanoparticles within the temperature range of 50-200 °C under reaction conditions, which appears to be correlated with the higher catalytic activity of the bigger nanoparticles. We found that the smaller Ru nanoparticles form bulk RuO(2) on their surfaces, causing the lower catalytic activity. As the size of the nanoparticle increases, the core-shell type RuO(2) becomes stable. Such in situ observations of Ru nanoparticles are useful in identifying the active state of the catalysts during use and, hence, may allow for rational catalyst designs for practical applications.
近年来,胶体合成技术在纳米粒子的尺寸、形状和组成的精确控制方面取得了进展,同时原位表面科学表征工具(如常压 X 射线光电子能谱 (APXPS))的发展,为揭示工作催化剂的表面结构提供了新的机会。我们报告了一项关于 Ru 纳米粒子的 APXPS 研究,以研究氧化、还原和 CO 氧化反应条件下 Ru 纳米粒子上的催化活性物种。2.8nm 和 6nm Ru 纳米粒子模型催化剂在聚(聚乙烯基吡咯烷酮)聚合物封端剂的存在下合成,并使用 Langmuir-Blodgett 沉积技术沉积在平坦的 Si 载体上作为二维阵列。温和的氧化和还原特性表明 Ru 纳米粒子表面形成了表面氧化物,其厚度取决于纳米粒子的尺寸。在反应条件下,温度范围在 50-200°C 内,较大的 6nm Ru 纳米粒子的氧化程度小于较小的 Ru 2.8nm 纳米粒子,这似乎与较大纳米粒子的较高催化活性有关。我们发现较小的 Ru 纳米粒子在其表面形成了体相 RuO2,导致催化活性较低。随着纳米粒子尺寸的增加,核壳型 RuO2 变得稳定。这种对 Ru 纳米粒子的原位观察有助于识别催化剂在使用过程中的活性状态,从而可以为实际应用的合理催化剂设计提供依据。