Suppr超能文献

巯基-二硫键交换的动力学和机制,涵盖直接取代和巯基氧化介导的途径。

Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways.

机构信息

Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary.

出版信息

Antioxid Redox Signal. 2013 May 1;18(13):1623-41. doi: 10.1089/ars.2012.4973. Epub 2013 Jan 9.

Abstract

SIGNIFICANCE

Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol-disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters.

CRITICAL ISSUES

This review is focused on the kinetics and mechanisms of thiol-disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail.

RECENT ADVANCES AND FUTURE DIRECTIONS

Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery.

摘要

意义

二硫键是蛋白质二级和三级结构的重要组成部分,充当着分子间和分子内的交联。二硫键也是硫醇氧化的主要产物,该过程在氧化应激防御机制和细胞信号转导的氧化还原调节中起着主要作用。尽管二硫键相对稳定,但它们的还原、异构化和相互转化以及它们的产生反应都由精细的酶机制催化,为生物学提供了一个动态系统。氧化还原平衡,即决定细胞区室中哪些反应可以发生的热力学参数,也通过硫醇-二硫键池来平衡。然而,反应的动力学特性最能代表细胞动力学,因为可能发生的反应的分配取决于动力学参数。

关键问题

本综述重点介绍了硫醇-二硫键取代和氧化还原反应的动力学和机制。它从严格的化学角度总结了与从小分子和酶系统进行动力学研究相关的挑战和进展,使用生物学实例。详细讨论了影响反应速率的最重要参数。

最新进展和未来方向

蛋白质的动力学研究比小分子更具挑战性,研究人员经常不得不牺牲实验方法的严谨性,以获得重要的动力学和机制信息。然而,最近的技术进步允许通过使用为小分子反应开发的系统动力学仪器更全面地分析酶系统,这有望为细胞机制提供进一步的见解。

相似文献

1
Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways.
Antioxid Redox Signal. 2013 May 1;18(13):1623-41. doi: 10.1089/ars.2012.4973. Epub 2013 Jan 9.
2
Kinetic and thermodynamic aspects of cellular thiol-disulfide redox regulation.
Antioxid Redox Signal. 2009 May;11(5):1047-58. doi: 10.1089/ars.2008.2297.
3
Glutaredoxins in thiol/disulfide exchange.
Antioxid Redox Signal. 2013 May 1;18(13):1654-65. doi: 10.1089/ars.2012.5007. Epub 2012 Dec 21.
4
Thiol-disulfide exchange in signaling: disulfide bonds as a switch.
Antioxid Redox Signal. 2013 May 1;18(13):1594-6. doi: 10.1089/ars.2012.5156. Epub 2013 Feb 25.
5
Low-molecular-weight thiols in thiol-disulfide exchange.
Antioxid Redox Signal. 2013 May 1;18(13):1642-53. doi: 10.1089/ars.2012.4964. Epub 2012 Dec 18.
7
Measurement and meaning of cellular thiol:disufhide redox status.
Free Radic Res. 2016;50(2):246-71. doi: 10.3109/10715762.2015.1110241.
8
Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology.
Free Radic Biol Med. 2008 Mar 15;44(6):921-37. doi: 10.1016/j.freeradbiomed.2007.11.008. Epub 2007 Nov 28.
9
Roles of thiol-redox pathways in bacteria.
Annu Rev Microbiol. 2001;55:21-48. doi: 10.1146/annurev.micro.55.1.21.
10
Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.
Free Radic Res. 2016;50(2):206-45. doi: 10.3109/10715762.2015.1120864.

引用本文的文献

1
The Molecular Interplay Between p53-Mediated Ferroptosis and Non-Coding RNAs in Cancer.
Int J Mol Sci. 2025 Jul 9;26(14):6588. doi: 10.3390/ijms26146588.
3
Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens.
Antioxidants (Basel). 2025 Apr 15;14(4):471. doi: 10.3390/antiox14040471.
4
Disulfidptosis in tumor progression.
Cell Death Discov. 2025 Apr 28;11(1):205. doi: 10.1038/s41420-025-02495-9.
5
Mechanism of glutathionylation of the active site thiols of peroxiredoxin 2.
J Biol Chem. 2025 Apr 11;301(5):108503. doi: 10.1016/j.jbc.2025.108503.
7
Controlling stimulus sensitivity by tailoring nanoparticle core hydrophobicity.
Biomater Sci. 2025 Apr 29;13(9):2332-2339. doi: 10.1039/d5bm00163c.
8
Hierarchically Porous Poly(aryl thioether)s Through Dynamic Linker Engineering for Thiyl Radical Photocatalysis.
Small. 2025 Jul;21(27):e2501398. doi: 10.1002/smll.202501398. Epub 2025 Mar 3.
9
Relationship between oxidative stress and endometrial polyps in pre-and postmenopausal women.
Pak J Med Sci. 2025 Jan;41(1):130-135. doi: 10.12669/pjms.41.1.10170.
10
Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions.
Antioxidants (Basel). 2025 Jan 18;14(1):108. doi: 10.3390/antiox14010108.

本文引用的文献

1
Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding.
Antioxid Redox Signal. 2013 Jan 1;18(1):94-127. doi: 10.1089/ars.2012.4521. Epub 2012 Sep 20.
2
Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: challenging the SN2 paradigm.
Chem Res Toxicol. 2012 Mar 19;25(3):741-6. doi: 10.1021/tx200540z. Epub 2012 Feb 16.
3
An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR.
J Am Chem Soc. 2012 Jan 25;134(3):1442-5. doi: 10.1021/ja209881f. Epub 2012 Jan 6.
4
Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space.
J Biol Chem. 2012 Feb 10;287(7):4426-33. doi: 10.1074/jbc.R111.270678. Epub 2011 Dec 6.
5
Direct observation of disulfide isomerization in a single protein.
Nat Chem. 2011 Oct 9;3(11):882-7. doi: 10.1038/nchem.1155.
6
Reactivity of thioredoxin as a protein thiol-disulfide oxidoreductase.
Chem Rev. 2011 Sep 14;111(9):5768-83. doi: 10.1021/cr100006x. Epub 2011 Jul 27.
7
Interplay of chemical microenvironment and redox environment on thiol-disulfide exchange kinetics.
Chemistry. 2011 Aug 29;17(36):10064-70. doi: 10.1002/chem.201101024. Epub 2011 Jul 21.
8
Multiple ways to make disulfides.
Trends Biochem Sci. 2011 Sep;36(9):485-92. doi: 10.1016/j.tibs.2011.05.004. Epub 2011 Jul 19.
9
Factors affecting protein thiol reactivity and specificity in peroxide reduction.
Chem Res Toxicol. 2011 Apr 18;24(4):434-50. doi: 10.1021/tx100413v. Epub 2011 Mar 10.
10
Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study.
J Biol Chem. 2011 May 20;286(20):18048-55. doi: 10.1074/jbc.M111.232355. Epub 2011 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验