Suppr超能文献

细菌在微需氧和厌氧条件下的代谢重编程

Metabolic reprogramming under microaerobic and anaerobic conditions in bacteria.

作者信息

Shan Yue, Lai Yong, Yan Aixin

机构信息

School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

出版信息

Subcell Biochem. 2012;64:159-79. doi: 10.1007/978-94-007-5055-5_8.

Abstract

Oxygen has a great impact on the metabolism and physiology of microorganisms. It serves as the most efficient terminal electron acceptor to drive the energy conservation process of cellular respiration and is required in many biosynthetic reactions. Bacteria encounter oxygen fluctuation and limitation during their growth in both natural ecological niches and in laboratory vessels. In response to oxygen limitation, facultative bacteria undergo substantial metabolic reprogramming to switch from the aerobic respiration to either anaerobic respiration, fermentation, or photosynthesis. Two key factors determine the metabolic pathways bacteria adopt under oxygen deprived microaerobic and anaerobic conditions: maximal energy conservation and redox homeostasis. In this chapter, we first describe how the fulfillment of these two key factors governs the metabolic reprogramming of facultative bacteria and how the process is tightly controlled by several global regulatory factors: FNR, ArcBA, as well as NarL and NarP. We then utilizes fermentation of glycerol, a large surplus byproduct of biodiesel industry, as an example to illustrate how environment, process, and strain based approaches can be exploited to manipulate and engineer the anaerobic metabolic pathways so that desirable fermentation products can be achieved with optimal yield.

摘要

氧气对微生物的代谢和生理有着重大影响。它作为最有效的终端电子受体,驱动细胞呼吸的能量守恒过程,并且在许多生物合成反应中是必需的。细菌在自然生态位和实验室容器中的生长过程中都会遇到氧气波动和限制。为应对氧气限制,兼性细菌会进行大量的代谢重编程,从有氧呼吸转变为无氧呼吸、发酵或光合作用。有两个关键因素决定了细菌在缺氧的微需氧和厌氧条件下所采用的代谢途径:最大能量守恒和氧化还原稳态。在本章中,我们首先描述这两个关键因素的实现如何控制兼性细菌的代谢重编程,以及该过程如何受到几个全局调节因子(FNR、ArcBA以及NarL和NarP)的严格控制。然后,我们以生物柴油行业大量剩余副产品甘油的发酵为例,来说明如何利用基于环境、工艺和菌株的方法来操纵和设计厌氧代谢途径,从而以最佳产量获得所需的发酵产物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验