Suppr超能文献

使用 USP I 和 USP IV 区分载药纳米/微颗粒薄膜的溶出速率。

Using USP I and USP IV for discriminating dissolution rates of nano- and microparticle-loaded pharmaceutical strip-films.

机构信息

Department of Chemical, Biochemical, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA.

出版信息

AAPS PharmSciTech. 2012 Dec;13(4):1473-82. doi: 10.1208/s12249-012-9875-3. Epub 2012 Oct 23.

Abstract

Recent interest in the development of drug particle-laden strip-films suggests the need for establishing standard regulatory tests for their dissolution. In this work, we consider the dissolution testing of griseofulvin (GF) particles, a poorly water-soluble compound, incorporated into a strip-film dosage form. The basket apparatus (USP I) and the flow-through cell dissolution apparatus (USP IV) were employed using 0.54% sodium dodecyl sulfate as the dissolution medium as per USP standard. Different rotational speeds and dissolution volumes were tested for the basket method while different cell patterns/strip-film position and dissolution media flow rate were tested using the flow-through cell dissolution method. The USP I was not able to discriminate dissolution of GF particles with respect to particle size. On the other hand, in the USP IV, GF nanoparticles incorporated in strip-films exhibited enhancement in dissolution rates and dissolution extent compared with GF microparticles incorporated in strip-films. Within the range of patterns and flow rates used, the optimal discrimination behavior was obtained when the strip-film was layered between glass beads and a flow rate of 16 ml/min was used. These results demonstrate the superior discriminatory power of the USP IV and suggest that it could be employed as a testing device in the development of strip-films containing drug nanoparticles.

摘要

最近人们对载药条带薄膜的开发产生了兴趣,这表明有必要建立标准的监管测试方法来检测其溶解情况。在这项工作中,我们考虑了将难溶性化合物灰黄霉素(GF)颗粒包埋在条带薄膜剂型中的溶解测试。采用USP 标准中的 0.54%十二烷基硫酸钠作为溶解介质,使用篮法(USP I)和流通池溶出仪(USP IV)进行实验。篮法实验测试了不同的转速和溶解体积,而流通池溶出仪实验则测试了不同的池模式/条带薄膜位置和溶解介质流速。USP I 无法区分 GF 颗粒的溶解情况与颗粒大小有关。另一方面,在 USP IV 中,与包埋在条带薄膜中的 GF 微颗粒相比,包埋在条带薄膜中的 GF 纳米颗粒表现出了更高的溶解速率和溶解程度。在所使用的图案和流速范围内,当条带薄膜分层放置在玻璃珠之间且流速为 16ml/min 时,获得了最佳的区分效果。这些结果表明 USP IV 具有优越的区分能力,并建议将其用作含有药物纳米颗粒的条带薄膜开发的测试设备。

相似文献

1
Using USP I and USP IV for discriminating dissolution rates of nano- and microparticle-loaded pharmaceutical strip-films.
AAPS PharmSciTech. 2012 Dec;13(4):1473-82. doi: 10.1208/s12249-012-9875-3. Epub 2012 Oct 23.
2
Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection.
Int J Pharm. 2013 Oct 15;455(1-2):93-103. doi: 10.1016/j.ijpharm.2013.07.051. Epub 2013 Jul 31.
7
Redispersible fast dissolving nanocomposite microparticles of poorly water-soluble drugs.
Int J Pharm. 2014 Jan 30;461(1-2):367-79. doi: 10.1016/j.ijpharm.2013.11.059. Epub 2013 Dec 11.
8
Polymer strip films as a robust, surfactant-free platform for delivery of BCS Class II drug nanoparticles.
Int J Pharm. 2015 Jul 15;489(1-2):45-57. doi: 10.1016/j.ijpharm.2015.04.034. Epub 2015 Apr 15.

引用本文的文献

1
Drug self-delivery systems: A comprehensive review on small molecule nanodrugs.
Bioimpacts. 2024 Oct 27;15:30161. doi: 10.34172/bi.30161. eCollection 2025.
4
Embedding of Poorly Water-Soluble Drugs in Orodispersible Films-Comparison of Five Formulation Strategies.
Pharmaceutics. 2022 Dec 21;15(1):17. doi: 10.3390/pharmaceutics15010017.
7
In vitro dissolution testing models of ocular implants for posterior segment drug delivery.
Drug Deliv Transl Res. 2022 Jun;12(6):1355-1375. doi: 10.1007/s13346-021-01043-z. Epub 2021 Aug 11.
8
In vitro dissolution considerations associated with nano drug delivery systems.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Nov;13(6):e1732. doi: 10.1002/wnan.1732. Epub 2021 Jun 15.
9
Impact of Mixing on Content Uniformity of Thin Polymer Films Containing Drug Micro-Doses.
Pharmaceutics. 2021 May 29;13(6):812. doi: 10.3390/pharmaceutics13060812.
10
Progress in the development of stabilization strategies for nanocrystal preparations.
Drug Deliv. 2021 Dec;28(1):19-36. doi: 10.1080/10717544.2020.1856224.

本文引用的文献

1
Continuous production of drug nanoparticle suspensions via wet stirred media milling: a fresh look at the Rehbinder effect.
Drug Dev Ind Pharm. 2013 Feb;39(2):266-83. doi: 10.3109/03639045.2012.676048. Epub 2012 Apr 16.
5
USP apparatus 4 method for in vitro release testing of protein loaded microspheres.
Int J Pharm. 2011 May 16;409(1-2):178-84. doi: 10.1016/j.ijpharm.2011.02.057. Epub 2011 Mar 3.
6
Novel aspects of wet milling for the production of microsuspensions and nanosuspensions of poorly water-soluble drugs.
Drug Dev Ind Pharm. 2011 Aug;37(8):963-76. doi: 10.3109/03639045.2010.551775. Epub 2011 Feb 16.
8
Comparative investigations on different polymers for the preparation of fast-dissolving oral films.
J Pharm Pharmacol. 2010 Apr;62(4):539-45. doi: 10.1211/jpp.62.04.0018.
9
A novel USP apparatus 4 based release testing method for dispersed systems.
Int J Pharm. 2010 Mar 30;388(1-2):287-94. doi: 10.1016/j.ijpharm.2010.01.009. Epub 2010 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验