Suppr超能文献

具有表观遗传意义的核酸修饰。

Nucleic acid modifications with epigenetic significance.

机构信息

Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.

出版信息

Curr Opin Chem Biol. 2012 Dec;16(5-6):516-24. doi: 10.1016/j.cbpa.2012.10.002. Epub 2012 Oct 22.

Abstract

Epigenetic modifications influence gene expression without alterations to the underlying nucleic acid sequence. In addition to the well-known 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC) have recently been discovered in genomic DNA, which all result from iterative oxidation of 5mC by the TET (Ten-Eleven-Translocate) family of enzymes. Recent studies have proposed the roles of these oxidized cytosines in mediating active demethylation of 5mC. Through affinity-based genome-wide sequencing and oxidation-assisted base-resolution sequencing methods, 5hmC is found to be dynamically regulated during development, and is enriched mainly in distal regulatory elements in human and mouse embryonic cells. Among RNA modifications, N(6)-methyladenosine (m(6)A) is a widespread yet poorly studied base modification in mRNA and non-coding RNA. The recent discovery that m(6)A in RNA is the major substrate of the fat mass and obesity associated (FTO) protein draws attention to the potential regulatory functions of reversible RNA methylations, which can be dynamic, and could be important in many fundamental cellular functions.

摘要

表观遗传修饰影响基因表达而不改变潜在的核酸序列。除了众所周知的 5-甲基胞嘧啶(5mC)外,5-羟甲基胞嘧啶(5hmC)、5-甲酰基胞嘧啶(5fC)和 5-羧基胞嘧啶(5caC)最近也在基因组 DNA 中被发现,它们均源于 TET(Ten-Eleven-Translocase)家族酶对 5mC 的反复氧化。最近的研究提出了这些氧化胞嘧啶在介导 5mC 活性去甲基化中的作用。通过基于亲和力的全基因组测序和氧化辅助的碱基分辨率测序方法,发现 5hmC 在发育过程中是动态调节的,并且在人和小鼠胚胎细胞中主要富集在远端调控元件中。在 RNA 修饰中,N(6)-甲基腺苷(m(6)A)是 mRNA 和非编码 RNA 中广泛存在但研究甚少的碱基修饰。最近发现,RNA 中的 m(6)A 是肥胖相关(FTO)蛋白的主要底物,这引起了人们对可逆 RNA 甲基化的潜在调节功能的关注,这种修饰是动态的,可能在许多基本的细胞功能中很重要。

相似文献

1
Nucleic acid modifications with epigenetic significance.
Curr Opin Chem Biol. 2012 Dec;16(5-6):516-24. doi: 10.1016/j.cbpa.2012.10.002. Epub 2012 Oct 22.
2
Charting oxidized methylcytosines at base resolution.
Nat Struct Mol Biol. 2015 Sep;22(9):656-61. doi: 10.1038/nsmb.3071.
5
Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming.
Cell. 2013 Apr 25;153(3):678-91. doi: 10.1016/j.cell.2013.04.001. Epub 2013 Apr 18.
6
Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword.
DNA Repair (Amst). 2015 Aug;32:52-57. doi: 10.1016/j.dnarep.2015.04.013. Epub 2015 May 1.
7
Structural insight into substrate preference for TET-mediated oxidation.
Nature. 2015 Nov 5;527(7576):118-22. doi: 10.1038/nature15713. Epub 2015 Oct 28.
8
Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics.
Cell. 2013 Apr 25;153(3):692-706. doi: 10.1016/j.cell.2013.04.002. Epub 2013 Apr 18.
9
TET1-Mediated Oxidation of 5-Formylcytosine (5fC) to 5-Carboxycytosine (5caC) in RNA.
Chembiochem. 2017 Jan 3;18(1):72-76. doi: 10.1002/cbic.201600328. Epub 2016 Nov 22.

引用本文的文献

1
Current progress in strategies to profile transcriptomic mA modifications.
Front Cell Dev Biol. 2024 Jul 11;12:1392159. doi: 10.3389/fcell.2024.1392159. eCollection 2024.
3
Mapping epigenetic modifications by sequencing technologies.
Cell Death Differ. 2025 Jan;32(1):56-65. doi: 10.1038/s41418-023-01213-1. Epub 2023 Sep 1.
4
Exploring the crop epigenome: a comparison of DNA methylation profiling techniques.
Front Plant Sci. 2023 May 30;14:1181039. doi: 10.3389/fpls.2023.1181039. eCollection 2023.
5
Uncovering plant epigenetics: new insights into cytosine methylation in rye genomes.
J Exp Bot. 2023 Jun 27;74(12):3395-3398. doi: 10.1093/jxb/erad144.
6
mA-SAC-seq for quantitative whole transcriptome mA profiling.
Nat Protoc. 2023 Feb;18(2):626-657. doi: 10.1038/s41596-022-00765-9. Epub 2022 Nov 25.
7
8
BERT6mA: prediction of DNA N6-methyladenine site using deep learning-based approaches.
Brief Bioinform. 2022 Mar 10;23(2). doi: 10.1093/bib/bbac053.
9
Target-Specific Profiling of RNA mC Methylation Level Using Amplicon Sequencing.
Methods Mol Biol. 2022;2404:375-392. doi: 10.1007/978-1-0716-1851-6_21.

本文引用的文献

1
FTO genotype is associated with phenotypic variability of body mass index.
Nature. 2012 Oct 11;490(7419):267-72. doi: 10.1038/nature11401. Epub 2012 Sep 16.
2
AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation.
Nat Chem Biol. 2012 Sep;8(9):751-8. doi: 10.1038/nchembio.1042. Epub 2012 Jul 8.
3
RNA methylation by the MIS complex regulates a cell fate decision in yeast.
PLoS Genet. 2012;8(6):e1002732. doi: 10.1371/journal.pgen.1002732. Epub 2012 Jun 7.
4
Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome.
Cell. 2012 Jun 8;149(6):1368-80. doi: 10.1016/j.cell.2012.04.027. Epub 2012 May 17.
5
Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons.
Cell. 2012 Jun 22;149(7):1635-46. doi: 10.1016/j.cell.2012.05.003. Epub 2012 May 17.
6
Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq.
Nature. 2012 Apr 29;485(7397):201-6. doi: 10.1038/nature11112.
7
Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution.
Science. 2012 May 18;336(6083):934-7. doi: 10.1126/science.1220671. Epub 2012 Apr 26.
8
Parallel mechanisms of epigenetic reprogramming in the germline.
Trends Genet. 2012 Apr;28(4):164-74. doi: 10.1016/j.tig.2012.01.005. Epub 2012 Mar 3.
9
A central role for long non-coding RNA in cancer.
Front Genet. 2012 Feb 15;3:17. doi: 10.3389/fgene.2012.00017. eCollection 2012.
10
Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA.
Nat Chem Biol. 2012 Feb 12;8(4):328-30. doi: 10.1038/nchembio.914.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验