Suppr超能文献

用于原位膜片钳记录的果蝇中枢神经元的制备

Preparation of Drosophila central neurons for in situ patch clamping.

作者信息

Ryglewski Stefanie, Duch Carsten

机构信息

School of Life Sciences, Arizona State University, AZ, USA.

出版信息

J Vis Exp. 2012 Oct 15(68):4264. doi: 10.3791/4264.

Abstract

Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker(1,2). Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain(3,4) and ventral nerve cord of embryonic(5,6), larval(7,8,9,10), and adult Drosophila(11,12,13,14). A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN5(15)), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique itself.

摘要

较短的世代时间和简便的遗传技术使果蝇成为基础神经科学研究中出色的遗传模型。离子通道是所有行为的基础,因为它们介导神经元的兴奋性。克隆的第一个电压门控离子通道是果蝇电压门控钾通道Shaker(1,2)。为了理解离子通道和膜兴奋性在神经系统功能中的作用,将果蝇中可用的强大遗传工具与原位膜片钳记录相结合是很有用的。多年来,这种记录一直受到果蝇中枢神经系统体积小的阻碍。此外,由神经胶质和胶原蛋白构成的坚固鞘膜也阻碍了膜片吸管接触中枢神经元。去除这个鞘膜是在成年果蝇中枢神经系统中对任何神经元进行膜片钳记录的必要前提。近年来,科学家们已经能够对成年大脑(3,4)以及胚胎期(5,6)、幼虫期(7,8,9,10)和成年果蝇(11,12,13,14)腹神经索中的神经元进行原位膜片钳记录。稳定的千兆封接是良好膜片钳记录的主要前提,这取决于膜片吸管与细胞膜的清洁接触以避免漏电流。因此,对于成年果蝇神经元的全细胞膜片钳原位记录,必须对其进行彻底清洁。第一步,必须对神经节鞘膜进行酶处理并机械去除,以使目标细胞可及。第二步,必须对细胞膜进行打磨,以便没有神经胶质、胶原蛋白或其他物质层干扰千兆封接的形成。本文描述了如何制备果蝇腹神经索中一个已鉴定的中枢神经元——飞行运动神经元5(MN5(15)),用于体细胞全细胞膜片钳记录。通过在MN5中靶向表达绿色荧光蛋白(GFP)来实现神经元的识别和可视化。我们的目的不是解释膜片钳技术本身。

相似文献

1
Preparation of Drosophila central neurons for in situ patch clamping.
J Vis Exp. 2012 Oct 15(68):4264. doi: 10.3791/4264.
2
Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron.
J Neurophysiol. 2009 Dec;102(6):3673-88. doi: 10.1152/jn.00693.2009. Epub 2009 Oct 14.
4
Whole-cell patch recording from Drosophila larval neurons.
Cold Spring Harb Protoc. 2011 Sep 1;2011(9):pdb.prot065664. doi: 10.1101/pdb.prot065664.
5
Patch-clamping Drosophila sensory neurons.
Methods Mol Biol. 2013;998:385-97. doi: 10.1007/978-1-62703-351-0_30.
6
Dendritic and Axonal L-Type Calcium Channels Cooperate to Enhance Motoneuron Firing Output during Larval Locomotion.
J Neurosci. 2017 Nov 8;37(45):10971-10982. doi: 10.1523/JNEUROSCI.1064-17.2017. Epub 2017 Oct 6.
7
Characterization of voltage-dependent Ca2+ currents in identified Drosophila motoneurons in situ.
J Neurophysiol. 2008 Aug;100(2):868-78. doi: 10.1152/jn.90464.2008. Epub 2008 Jun 11.
8
Transient BK outward current enhances motoneurone firing rates during Drosophila larval locomotion.
J Physiol. 2015 Nov 15;593(22):4871-88. doi: 10.1113/JP271323. Epub 2015 Oct 2.
9
Nucleated, Outside-Out, Somatic, Macropatch Recordings in Native Neurons.
Methods Mol Biol. 2021;2188:229-242. doi: 10.1007/978-1-0716-0818-0_11.
10
Patch-Clamping Fly Brain Neurons.
Cold Spring Harb Protoc. 2022 Aug 1;2022(8):Pdb.top107796. doi: 10.1101/pdb.top107796.

本文引用的文献

1
Ca(v)2 channels mediate low and high voltage-activated calcium currents in Drosophila motoneurons.
J Physiol. 2012 Feb 15;590(4):809-25. doi: 10.1113/jphysiol.2011.222836. Epub 2011 Dec 19.
2
Segmental differences in firing properties and potassium currents in Drosophila larval motoneurons.
J Neurophysiol. 2012 Mar;107(5):1356-65. doi: 10.1152/jn.00200.2011. Epub 2011 Dec 7.
4
Spike integration and cellular memory in a rhythmic network from Na+/K+ pump current dynamics.
Nat Neurosci. 2010 Jan;13(1):53-9. doi: 10.1038/nn.2444. Epub 2009 Dec 6.
5
Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron.
J Neurophysiol. 2009 Dec;102(6):3673-88. doi: 10.1152/jn.00693.2009. Epub 2009 Oct 14.
6
Alternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation, and persistent current.
J Neurophysiol. 2009 Sep;102(3):1994-2006. doi: 10.1152/jn.00613.2009. Epub 2009 Jul 22.
8
Whole cell recordings from brain of adult Drosophila.
J Vis Exp. 2007(6):248. doi: 10.3791/248. Epub 2007 Jul 29.
9
Dendrite elongation and dendritic branching are affected separately by different forms of intrinsic motoneuron excitability.
J Neurophysiol. 2008 Nov;100(5):2525-36. doi: 10.1152/jn.90758.2008. Epub 2008 Aug 20.
10
Characterization of voltage-dependent Ca2+ currents in identified Drosophila motoneurons in situ.
J Neurophysiol. 2008 Aug;100(2):868-78. doi: 10.1152/jn.90464.2008. Epub 2008 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验