Ryglewski Stefanie, Duch Carsten
School of Life Sciences, Arizona State University, AZ, USA.
J Vis Exp. 2012 Oct 15(68):4264. doi: 10.3791/4264.
Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker(1,2). Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain(3,4) and ventral nerve cord of embryonic(5,6), larval(7,8,9,10), and adult Drosophila(11,12,13,14). A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN5(15)), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique itself.
较短的世代时间和简便的遗传技术使果蝇成为基础神经科学研究中出色的遗传模型。离子通道是所有行为的基础,因为它们介导神经元的兴奋性。克隆的第一个电压门控离子通道是果蝇电压门控钾通道Shaker(1,2)。为了理解离子通道和膜兴奋性在神经系统功能中的作用,将果蝇中可用的强大遗传工具与原位膜片钳记录相结合是很有用的。多年来,这种记录一直受到果蝇中枢神经系统体积小的阻碍。此外,由神经胶质和胶原蛋白构成的坚固鞘膜也阻碍了膜片吸管接触中枢神经元。去除这个鞘膜是在成年果蝇中枢神经系统中对任何神经元进行膜片钳记录的必要前提。近年来,科学家们已经能够对成年大脑(3,4)以及胚胎期(5,6)、幼虫期(7,8,9,10)和成年果蝇(11,12,13,14)腹神经索中的神经元进行原位膜片钳记录。稳定的千兆封接是良好膜片钳记录的主要前提,这取决于膜片吸管与细胞膜的清洁接触以避免漏电流。因此,对于成年果蝇神经元的全细胞膜片钳原位记录,必须对其进行彻底清洁。第一步,必须对神经节鞘膜进行酶处理并机械去除,以使目标细胞可及。第二步,必须对细胞膜进行打磨,以便没有神经胶质、胶原蛋白或其他物质层干扰千兆封接的形成。本文描述了如何制备果蝇腹神经索中一个已鉴定的中枢神经元——飞行运动神经元5(MN5(15)),用于体细胞全细胞膜片钳记录。通过在MN5中靶向表达绿色荧光蛋白(GFP)来实现神经元的识别和可视化。我们的目的不是解释膜片钳技术本身。