Centro Nazionale di Adroterapia Oncologica, Pavia, Italy.
Phys Med Biol. 2012 Nov 21;57(22):7543-54. doi: 10.1088/0031-9155/57/22/7543. Epub 2012 Oct 26.
In carbon ion radiotherapy there is an urgent clinical need to develop objective tools for the conversion of relative biological effectiveness (RBE)-weighted doses based on different models. In this work we introduce a clinically oriented method to compare NIRS-based and LEM-based GyE systems, minimizing differences in physical dose distributions between treatment plans. Carbon ion plans were optimized on target volumes of cubic and spherical shapes, for RBE-weighted dose prescription levels ranging from 3.6 to 4.4 GyE. Plans were calculated for target sizes from 4 to 12 cm defining three beam geometries: single beam, opposed beam and orthogonal beam configurations. The two treatment planning systems currently employed in clinical practice were used, providing the NIRS-based and LEM-based GyE calculations. Physical dose distributions of NIRS-based and LEM-based treatment plans were compared. LEM-based prescription doses that minimize differences in physical dose distributions between the two systems were found. These doses were compared with the mean RBE-weighted dose obtained with a Monte Carlo code (FLUKA) interfaced with LEM I. In the investigated dose range, LEM-based RBE-weighted prescription doses, that minimize differences with NIRS plans, should be higher than NIRS reported prescription doses. The optimal dose depends on target size, shape and position, number of beams and dose level. The opposed beam configuration resulted in the smallest average prescription dose difference (0.45 ± 0.09 GyE). The second approach of recalculating NIRS RBE-weighted dose with a Monte Carlo code interfaced with LEM resulted in no significant difference with the results obtained from the planning study. The delivery of a voxel by voxel iso-effective plan, if different RBE models are employed, is not feasible; it is however possible to minimize differences in a treatment plan with the simple approach presented here. Dose prescription ultimately represents a clinical task under the responsibility of the radiation oncologist, the presented analysis intends to be a quantitative and objective way to assist the clinical decision.
在碳离子放射治疗中,迫切需要开发基于不同模型的相对生物学效应(RBE)加权剂量转换的客观工具。在这项工作中,我们引入了一种临床导向的方法来比较基于近红外光谱(NIRS)和基于线性效应模型(LEM)的 GyE 系统,最大限度地减少治疗计划之间的物理剂量分布差异。针对 RBE 加权剂量处方水平为 3.6 至 4.4 GyE 的立方和球形靶区,优化了碳离子计划。计划针对 4 至 12 cm 的靶区大小进行了计算,定义了三种射束几何形状:单束、对向束和正交束配置。使用了目前临床实践中使用的两种治疗计划系统,提供了基于 NIRS 和基于 LEM 的 GyE 计算。比较了基于 NIRS 和基于 LEM 的治疗计划的物理剂量分布。找到了使两个系统之间的物理剂量分布差异最小的基于 LEM 的处方剂量。将这些剂量与使用与 LEM I 接口的蒙特卡罗代码(FLUKA)获得的平均 RBE 加权剂量进行了比较。在所研究的剂量范围内,使与 NIRS 计划差异最小的基于 LEM 的 RBE 加权处方剂量应高于 NIRS 报告的处方剂量。最佳剂量取决于靶区大小、形状和位置、射束数量和剂量水平。对向束配置导致最小的平均处方剂量差异(0.45±0.09 GyE)。第二种方法是使用与 LEM 接口的蒙特卡罗代码重新计算 NIRS 的 RBE 加权剂量,与从计划研究中获得的结果没有显著差异。如果使用不同的 RBE 模型,逐个体素的等效应计划的交付是不可行的;但是,可以使用这里提出的简单方法来最小化治疗计划中的差异。剂量处方最终代表了放射肿瘤学家的临床任务,提出的分析旨在为临床决策提供一种定量和客观的方法。