Suppr超能文献

机械敏感性氯离子分泌在胆管上皮细胞中通过 TMEM16A 介导。

Mechanosensitive Cl- secretion in biliary epithelium mediated through TMEM16A.

机构信息

Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9063, USA.

出版信息

Am J Physiol Gastrointest Liver Physiol. 2013 Jan 1;304(1):G87-98. doi: 10.1152/ajpgi.00154.2012. Epub 2012 Oct 25.

Abstract

Bile formation by the liver is initiated by canalicular transport at the hepatocyte membrane, leading to an increase in ductular bile flow. Thus, bile duct epithelial cells (cholangiocytes), which contribute to the volume and dilution of bile through regulated Cl(-) transport, are exposed to changes in flow and shear force at the apical membrane. The aim of the present study was to determine if fluid flow, or shear stress, is a signal regulating cholangiocyte transport. The results demonstrate that, in human and mouse biliary cells, fluid flow, or shear, increases Cl(-) currents and identify TMEM16A, a Ca(2+)-activated Cl(-) channel, as the operative channel. Furthermore, activation of TMEM16A by flow is dependent on PKCα through a process involving extracellular ATP, binding purinergic P2 receptors, and increases in intracellular Ca(2+) concentration. These studies represent the initial characterization of mechanosensitive Cl(-) currents mediated by TMEM16A. Identification of this novel mechanosensitive secretory pathway provides new insight into bile formation and suggests new therapeutic targets to enhance bile formation in the treatment of cholestatic liver disorders.

摘要

胆汁的形成始于肝细胞质膜上的胆小管转运,导致胆管内胆汁流量增加。因此,胆管上皮细胞(胆管细胞)通过调节 Cl(-)转运来影响胆汁的体积和稀释度,其顶端膜会受到流动和切应力的变化的影响。本研究旨在确定流体流动或切应力是否是调节胆管细胞转运的信号。研究结果表明,在人源和鼠源的胆管细胞中,流体流动或切应力会增加 Cl(-)电流,并确定 TMEM16A(一种 Ca(2+)-激活的 Cl(-)通道)为作用通道。此外,通过涉及细胞外 ATP、结合嘌呤能 P2 受体和细胞内 Ca(2+)浓度增加的过程,PKCα 依赖性激活 TMEM16A 会增加 Cl(-)电流。这些研究代表了由 TMEM16A 介导的机械敏感 Cl(-)电流的初步特征。该新型机械敏感分泌途径的鉴定为胆汁形成提供了新的见解,并为治疗胆汁淤积性肝病中增强胆汁形成提供了新的治疗靶点。

相似文献

1
Mechanosensitive Cl- secretion in biliary epithelium mediated through TMEM16A.
Am J Physiol Gastrointest Liver Physiol. 2013 Jan 1;304(1):G87-98. doi: 10.1152/ajpgi.00154.2012. Epub 2012 Oct 25.
2
Signaling through the interleukin-4 and interleukin-13 receptor complexes regulates cholangiocyte TMEM16A expression and biliary secretion.
Am J Physiol Gastrointest Liver Physiol. 2020 Apr 1;318(4):G763-G771. doi: 10.1152/ajpgi.00219.2019. Epub 2020 Feb 24.
4
PKCα regulates TMEM16A-mediated Cl⁻ secretion in human biliary cells.
Am J Physiol Gastrointest Liver Physiol. 2016 Jan 1;310(1):G34-42. doi: 10.1152/ajpgi.00146.2015. Epub 2015 Nov 5.
5
Bile acids stimulate cholangiocyte fluid secretion by activation of transmembrane member 16A Cl channels.
Hepatology. 2018 Jul;68(1):187-199. doi: 10.1002/hep.29804. Epub 2018 May 9.
6
Mechanosensor transient receptor potential vanilloid member 4 (TRPV4) regulates mouse cholangiocyte secretion and bile formation.
Am J Physiol Gastrointest Liver Physiol. 2020 Feb 1;318(2):G277-G287. doi: 10.1152/ajpgi.00176.2019. Epub 2019 Nov 25.
7
Extracellular nucleotides stimulate Cl- currents in biliary epithelia through receptor-mediated IP3 and Ca2+ release.
Am J Physiol Gastrointest Liver Physiol. 2008 Nov;295(5):G1004-15. doi: 10.1152/ajpgi.90382.2008. Epub 2008 Sep 11.
9
TMEM16A drives renal cyst growth by augmenting Ca signaling in M1 cells.
J Mol Med (Berl). 2020 May;98(5):659-671. doi: 10.1007/s00109-020-01894-y. Epub 2020 Mar 18.
10
Epithelial Chloride Transport by CFTR Requires TMEM16A.
Sci Rep. 2017 Sep 29;7(1):12397. doi: 10.1038/s41598-017-10910-0.

引用本文的文献

1
Purinergic Signaling in Non-Parenchymal Liver Cells.
Int J Mol Sci. 2024 Aug 30;25(17):9447. doi: 10.3390/ijms25179447.
2
Mechanisms of endothelial flow sensing.
Nat Cardiovasc Res. 2023 Jun;2(6):517-529. doi: 10.1038/s44161-023-00276-0. Epub 2023 Jun 12.
3
The role of anoctamin 1 in liver disease.
J Cell Mol Med. 2024 May;28(9):e18320. doi: 10.1111/jcmm.18320.
5
TMEM16A in smooth muscle cells acts as a pacemaker channel in the internal anal sphincter.
Commun Biol. 2024 Feb 5;7(1):151. doi: 10.1038/s42003-024-05850-1.
6
Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli.
bioRxiv. 2024 Mar 4:2023.10.03.560740. doi: 10.1101/2023.10.03.560740.
7
PKC regulation of ion channels: The involvement of PIP.
J Biol Chem. 2022 Jun;298(6):102035. doi: 10.1016/j.jbc.2022.102035. Epub 2022 May 16.
9
Mechanical Stress Modulates Calcium-Activated-Chloride Currents in Differentiating Lens Cells.
Front Physiol. 2022 Jan 31;13:814651. doi: 10.3389/fphys.2022.814651. eCollection 2022.

本文引用的文献

1
Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh) -A01.
Br J Pharmacol. 2013 Feb;168(3):773-84. doi: 10.1111/j.1476-5381.2012.02199.x.
2
TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries.
Circ Res. 2012 Sep 28;111(8):1027-36. doi: 10.1161/CIRCRESAHA.112.277145. Epub 2012 Aug 7.
3
TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression.
Cancer Res. 2012 Jul 1;72(13):3270-81. doi: 10.1158/0008-5472.CAN-12-0475-T. Epub 2012 May 7.
6
Identification and functional characterization of the intermediate-conductance Ca(2+)-activated K(+) channel (IK-1) in biliary epithelium.
Am J Physiol Gastrointest Liver Physiol. 2009 Nov;297(5):G1009-18. doi: 10.1152/ajpgi.00223.2009.
7
Mechanosensitive gating of CFTR.
Nat Cell Biol. 2010 May;12(5):507-12. doi: 10.1038/ncb2053. Epub 2010 Apr 18.
8
CLC-3 chloride channels in the pulmonary vasculature.
Adv Exp Med Biol. 2010;661:237-47. doi: 10.1007/978-1-60761-500-2_15.
9
TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A.
J Biol Chem. 2009 Oct 16;284(42):28571-8. doi: 10.1074/jbc.M109.010074. Epub 2009 Aug 4.
10
Expression cloning of TMEM16A as a calcium-activated chloride channel subunit.
Cell. 2008 Sep 19;134(6):1019-29. doi: 10.1016/j.cell.2008.09.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验