Department of Psychology, University of California, Santa Barbara, CA, USA.
Med Phys. 2012 Nov;39(11):7121-30. doi: 10.1118/1.4761869.
Several studies have shown that the power spectrum of x-ray breast images is well described by a power-law at lower frequencies where anatomical variability dominates. However, an image generated from a Gaussian process with this spectrum is easily distinguished from an image of actual breast tissue by eye. This demonstrates that higher order non-Gaussian statistical properties of mammograms are readily accessible to the visual system. The authors' purpose is to quantify and characterize non-Gaussian statistical properties of breast images as influenced by processing of a digital mammogram, different imaging modalities, and breast density.
To quantify non-Gaussian statistical properties, the authors consider histograms of filter responses from the interior of a breast image that have similar properties to receptive fields in the early visual system. They quantify departure from a Gaussian distribution by the relative entropy of the histogram compared to a best-fit Gaussian distribution. This entropy is normalized by the relative entropy of a best-fit Laplacian distribution into a measure they refer to as Laplacian fractional entropy (LFE). They test the LFE on a set of 26 patients recalled at screening for which they have available full-field digital mammography (FFDM), digital breast tomosynthesis (DBT), and dedicated breast CT (bCT) images as well as breast density scores and biopsy results.
A study of LFE in FFDM comparing the raw "for-processing" transmission data from the device to log-converted density estimates and the processed "for-display" data shows that processing mammographic image data enhances the non-Gaussian content of the image. A check of the methodology using a Gaussian process with a power-law power spectrum shows relatively little bias from the finite extent of the region of interests used. A second study comparing LFE across FFDM, DBT, and bCT modalities shows that each maximized the non-Gaussian content of the image for different ranges of spatial frequency. FFDM is optimal at high spatial frequencies (>0.7 mm(-1)), DBT is optimal at mid-range frequencies (0.3-0.7 mm(-1)), and bCT is optimal at low spatial frequency (<0.3 mm(-1)). A third study of breast density in FFDM and bCT shows that LFE generally rises slightly going from the low-to moderate density, and then falls considerably at higher densities.
Non-Gaussian statistical structure in breast images that is manifest in the responses of Gabor filters similar to receptive fields of the early visual system is dependent on how the image data are processed, the modality used to acquire the image, and the density of the breast tissue being imaged. Higher LFE corresponds with expected improvements from image processing and 3D imaging.
多项研究表明,在解剖结构变化占主导地位的低频区域,乳腺 X 射线图像的功率谱可以很好地用幂律来描述。然而,通过眼观察,由具有这种频谱的高斯过程生成的图像很容易与实际乳腺组织的图像区分开来。这表明,乳房 X 光片的高阶非高斯统计特性很容易被视觉系统获取。作者的目的是量化和描述受数字乳腺图像处理、不同成像方式和乳腺密度影响的乳腺图像的非高斯统计特性。
为了量化非高斯统计特性,作者考虑了乳腺图像内部滤波器响应的直方图,这些直方图与早期视觉系统中的感受野具有相似的特性。他们通过将直方图的相对熵与最佳拟合高斯分布的相对熵进行比较来量化与高斯分布的偏离程度。通过将此熵除以最佳拟合拉普拉斯分布的相对熵,将其归一化为他们称为拉普拉斯分数熵(LFE)的度量。他们在一组 26 名接受筛查的患者身上测试了 LFE,这些患者可获得全视野数字乳腺摄影术(FFDM)、数字乳腺断层合成术(DBT)和专用乳腺 CT(bCT)图像以及乳腺密度评分和活检结果。
在比较设备的原始“处理前”传输数据与对数转换密度估计值以及处理后的“显示前”数据的 FFDM 中 LFE 的研究中,图像处理乳腺图像数据增强了图像的非高斯内容。使用具有幂律功率谱的高斯过程对该方法进行检查,结果表明,从感兴趣区域的有限范围使用来看,相对误差很小。第二项比较 FFDM、DBT 和 bCT 模式之间 LFE 的研究表明,每种模式都针对不同的空间频率范围最大化了图像的非高斯内容。FFDM 在高空间频率(>0.7mm(-1))下效果最佳,DBT 在中频范围(0.3-0.7mm(-1))下效果最佳,而 bCT 在低空间频率(<0.3mm(-1))下效果最佳。在 FFDM 和 bCT 中乳腺密度的第三项研究表明,LFE 通常从低到中等密度略有升高,然后在较高密度时显著下降。
在与早期视觉系统的感受野相似的伽马滤波器响应中表现出的乳腺图像的非高斯统计结构取决于图像数据的处理方式、获取图像的方式以及成像的乳腺组织的密度。较高的 LFE 对应于图像处理和 3D 成像的预期改进。