Suppr超能文献

计算机辅助检测在极小尺寸筛查检出性乳腺癌中的作用。

Role of computer-aided detection in very small screening detected invasive breast cancers.

机构信息

Department of Radiology (CDIC), Hospital Clínic de Barcelona, C/Villarroel,170, 08036, Barcelona, Spain.

出版信息

J Digit Imaging. 2013 Jun;26(3):572-7. doi: 10.1007/s10278-012-9550-y.

Abstract

This study aims to assess computer-aided detection (CAD) performance with full-field digital mammography (FFDM) in very small (equal to or less than 1 cm) invasive breast cancers. Sixty-eight invasive breast cancers less than or equal to 1 cm were retrospectively studied. All cases were detected with FFDM in women aged 49-69 years from our breast cancer screening program. Radiological characteristics of lesions following BI-RADS descriptors were recorded and compared with CAD sensitivity. Age, size, BI-RADS classification, breast density type, histological type of the neoplasm, and role of the CAD were also assessed. Per-study specificity and mass false-positive rate were determined by using 100 normal consecutive studies. Thirty-seven (54.4 %) masses, 17 (25 %) calcifications, 6 (8.8 %) masses with calcifications, 7 (10.3 %) architectural distortions, and 1 asymmetry (1.5 %) were found. CAD showed an overall sensitivity of 86.7 % (masses, 86.5 %; calcifications, 100 %; masses with calcifications, 100 %; and architectural distortion, 57.14 %), CAD failed to detect 9 out of 68 cases: 5 of 37 masses, 3 of 7 architectural distortions, and 1 of 1 asymmetry. Fifteen out of 37 masses were hyperdense, and all of them were detected by CAD. No association was seen among mass morphology or margins and detectability. Per-study specificity and CAD false-positive rate was 26 % and 1.76 false marks per study. In conclusion, CAD shows a high sensitivity and a low specificity. Lesion size, histology, and breast density do not influence sensitivity. Mammographic features, mass density, and thickness of the spicules in architectural distortions do influence.

摘要

本研究旨在评估全数字化乳腺摄影(FFDM)在非常小(等于或小于 1 厘米)浸润性乳腺癌中的计算机辅助检测(CAD)性能。回顾性研究了 68 例小于或等于 1 厘米的浸润性乳腺癌。所有病例均为我院乳腺癌筛查项目中 49-69 岁女性用 FFDM 检测。记录了病变的影像学特征,并根据 BI-RADS 描述符与 CAD 敏感性进行比较。还评估了年龄、大小、BI-RADS 分类、乳腺密度类型、肿瘤的组织学类型以及 CAD 的作用。通过使用 100 例连续正常研究来确定每例研究的特异性和肿块假阳性率。发现 37 例(54.4%)肿块、17 例(25%)钙化、6 例(8.8%)肿块伴钙化、7 例(10.3%)结构扭曲和 1 例(1.5%)不对称。CAD 的总体敏感性为 86.7%(肿块为 86.5%;钙化为 100%;肿块伴钙化为 100%;结构扭曲为 57.14%),CAD 未能检测出 68 例中的 9 例:37 例肿块中的 5 例、7 例结构扭曲中的 3 例和 1 例不对称。37 个肿块中有 15 个为高密度,均被 CAD 检测到。肿块形态或边界与可检测性之间未见相关性。每例研究的特异性和 CAD 假阳性率分别为 26%和每例研究 1.76 个假标记。总之,CAD 具有较高的敏感性和较低的特异性。病变大小、组织学和乳腺密度不影响敏感性。乳腺摄影特征、肿块密度和结构扭曲中刺突的厚度会有影响。

相似文献

1
Role of computer-aided detection in very small screening detected invasive breast cancers.
J Digit Imaging. 2013 Jun;26(3):572-7. doi: 10.1007/s10278-012-9550-y.
2
Mammographic features of screening detected pT1 (a-b) invasive breast cancer using BI-RADS lexicon.
Eur J Radiol. 2012 Oct;81(10):2620-6. doi: 10.1016/j.ejrad.2011.12.009. Epub 2011 Dec 27.
3
Detection of breast cancer with full-field digital mammography and computer-aided detection.
AJR Am J Roentgenol. 2009 Feb;192(2):337-40. doi: 10.2214/AJR.07.3884.
4
Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers.
Eur J Radiol. 2011 Mar;77(3):457-61. doi: 10.1016/j.ejrad.2009.08.024. Epub 2009 Oct 28.
5
Computer-aided detection in direct digital full-field mammography: initial results.
Eur Radiol. 2002 Dec;12(12):3015-7. doi: 10.1007/s00330-002-1393-3. Epub 2002 Jun 12.
7
Prospective assessment of computer-aided detection in interpretation of screening mammography.
AJR Am J Roentgenol. 2006 Dec;187(6):1483-91. doi: 10.2214/AJR.05.1582.
9
Detection of breast cancer with a computer-aided detection applied to full-field digital mammography.
J Digit Imaging. 2013 Aug;26(4):768-73. doi: 10.1007/s10278-012-9564-5.

引用本文的文献

1
Efficacy of ultrasonography and mammography in detecting features of breast cancer.
J Family Med Prim Care. 2025 Jan;14(1):341-347. doi: 10.4103/jfmpc.jfmpc_1225_24. Epub 2025 Jan 13.
2
Interpretation time for screening mammography as a function of the number of computer-aided detection marks.
J Med Imaging (Bellingham). 2020 Mar;7(2):022408. doi: 10.1117/1.JMI.7.2.022408. Epub 2020 Feb 3.

本文引用的文献

1
How widely is computer-aided detection used in screening and diagnostic mammography?
J Am Coll Radiol. 2010 Oct;7(10):802-5. doi: 10.1016/j.jacr.2010.05.019.
2
Computer-aided detection system applied to full-field digital mammograms.
Acta Radiol. 2010 Dec;51(10):1086-92. doi: 10.3109/02841851.2010.520024. Epub 2010 Oct 1.
4
Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers.
Eur J Radiol. 2011 Mar;77(3):457-61. doi: 10.1016/j.ejrad.2009.08.024. Epub 2009 Oct 28.
5
Detection of breast cancer with full-field digital mammography and computer-aided detection.
AJR Am J Roentgenol. 2009 Feb;192(2):337-40. doi: 10.2214/AJR.07.3884.
7
10
Prospective assessment of computer-aided detection in interpretation of screening mammography.
AJR Am J Roentgenol. 2006 Dec;187(6):1483-91. doi: 10.2214/AJR.05.1582.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验