Suppr超能文献

模拟人类内毒素血症中的生理变异性。

Modeling physiologic variability in human endotoxemia.

作者信息

Scheff Jeremy D, Mavroudis Panteleimon D, Foteinou Panagiota T, Calvano Steve E, Androulakis Ioannis P

机构信息

Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

Crit Rev Biomed Eng. 2012;40(4):313-22. doi: 10.1615/critrevbiomedeng.v40.i4.60.

Abstract

The control and management of inflammation is a key aspect of clinical care for critical illnesses such as sepsis. In an ideal reaction to injury, the inflammatory response provokes a strong enough response to heal the injury and then restores homeostasis. When inflammation becomes dysregulated, a persistent inflammatory state can lead to significant deleterious effects and clinical challenges. Thus, gaining a better biological understanding of the mechanisms driving the inflammatory response is of the utmost importance. In this review, we discuss our work with the late Stephen F. Lowry to investigate systemic inflammation through systems biology of human endotoxemia. We present our efforts in modeling the human endotoxemia response with a particular focus on physiologic variability. Through modeling, with a focus ultimately on translational applications, we obtain more fundamental understanding of relevant physiological processes. And by taking advantage of the information embedded in biological rhythms, ranging in time scale from high-frequency autonomic oscillations reflected in heart rate variability to circadian rhythms in inflammatory mediators, we gain insight into the underlying physiology.

摘要

炎症的控制与管理是脓毒症等危重病临床护理的关键环节。在对损伤的理想反应中,炎症反应引发足够强烈的反应以治愈损伤,然后恢复体内平衡。当炎症失调时,持续的炎症状态会导致严重的有害影响和临床挑战。因此,更好地从生物学角度理解驱动炎症反应的机制至关重要。在本综述中,我们讨论了我们与已故的斯蒂芬·F·洛瑞合作,通过人类内毒素血症的系统生物学来研究全身炎症。我们展示了我们在构建人类内毒素血症反应模型方面所做的努力,特别关注生理变异性。通过建模,最终着眼于转化应用,我们对相关生理过程有了更深入的理解。并且通过利用生物节律中蕴含的信息,其时间尺度从心率变异性所反映的高频自主振荡到炎症介质的昼夜节律,我们深入了解了潜在的生理学机制。

相似文献

1
Modeling physiologic variability in human endotoxemia.
Crit Rev Biomed Eng. 2012;40(4):313-22. doi: 10.1615/critrevbiomedeng.v40.i4.60.
2
Translational applications of evaluating physiologic variability in human endotoxemia.
J Clin Monit Comput. 2013 Aug;27(4):405-15. doi: 10.1007/s10877-012-9418-1. Epub 2012 Dec 1.
3
Modeling autonomic regulation of cardiac function and heart rate variability in human endotoxemia.
Physiol Genomics. 2011 Aug 24;43(16):951-64. doi: 10.1152/physiolgenomics.00040.2011. Epub 2011 Jun 14.
4
An agent-based model of cellular dynamics and circadian variability in human endotoxemia.
PLoS One. 2013;8(1):e55550. doi: 10.1371/journal.pone.0055550. Epub 2013 Jan 30.
5
A physiological model for autonomic heart rate regulation in human endotoxemia.
Shock. 2011 Mar;35(3):229-39. doi: 10.1097/SHK.0b013e318200032b.
6
Modeling the influence of circadian rhythms on the acute inflammatory response.
J Theor Biol. 2010 Jun 7;264(3):1068-76. doi: 10.1016/j.jtbi.2010.03.026. Epub 2010 Mar 20.
7
Translational systems biology of inflammation.
PLoS Comput Biol. 2008 Apr 25;4(4):e1000014. doi: 10.1371/journal.pcbi.1000014.
9
Circadian variation in the response to experimental endotoxemia and modulatory effects of exogenous melatonin.
Chronobiol Int. 2013 Nov;30(9):1174-80. doi: 10.3109/07420528.2013.808653. Epub 2013 Sep 3.

引用本文的文献

1
The Physiological and Pharmacological Significance of the Circadian Timing of the HPA Axis: A Mathematical Modeling Approach.
J Pharm Sci. 2024 Jan;113(1):33-46. doi: 10.1016/j.xphs.2023.08.005. Epub 2023 Aug 18.
3
Mathematical modeling of mammalian circadian clocks affecting drug and disease responses.
J Pharmacokinet Pharmacodyn. 2021 Jun;48(3):375-386. doi: 10.1007/s10928-021-09746-z. Epub 2021 Mar 16.
4
On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.
Comput Chem Eng. 2017 Dec 5;107:100-110. doi: 10.1016/j.compchemeng.2017.06.003. Epub 2017 Jun 3.
5
Asymmetry in Signal Oscillations Contributes to Efficiency of Periodic Systems.
Crit Rev Biomed Eng. 2016;44(3):193-211. doi: 10.1615/CritRevBiomedEng.2017019658.
9
On heart rate variability and autonomic activity in homeostasis and in systemic inflammation.
Math Biosci. 2014 Jun;252:36-44. doi: 10.1016/j.mbs.2014.03.010. Epub 2014 Mar 26.

本文引用的文献

1
Entrainment of peripheral clock genes by cortisol.
Physiol Genomics. 2012 Jun 1;44(11):607-21. doi: 10.1152/physiolgenomics.00001.2012. Epub 2012 Apr 17.
3
The search for effective therapy for sepsis: back to the drawing board?
JAMA. 2011 Dec 21;306(23):2614-5. doi: 10.1001/jama.2011.1853.
4
Transcriptional implications of ultradian glucocorticoid secretion in homeostasis and in the acute stress response.
Physiol Genomics. 2012 Feb 1;44(2):121-9. doi: 10.1152/physiolgenomics.00128.2011. Epub 2011 Nov 29.
5
Review and classification of variability analysis techniques with clinical applications.
Biomed Eng Online. 2011 Oct 10;10:90. doi: 10.1186/1475-925X-10-90.
6
Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial.
J Pediatr. 2011 Dec;159(6):900-6.e1. doi: 10.1016/j.jpeds.2011.06.044. Epub 2011 Aug 24.
7
Sepsis: Something old, something new, and a systems view.
J Crit Care. 2012 Jun;27(3):314.e1-11. doi: 10.1016/j.jcrc.2011.05.025. Epub 2011 Jul 27.
8
Pulsatile glucocorticoid secretion: origins and downstream effects.
IEEE Trans Biomed Eng. 2011 Dec;58(12):3504-7. doi: 10.1109/TBME.2011.2162236. Epub 2011 Jul 18.
9
Modeling autonomic regulation of cardiac function and heart rate variability in human endotoxemia.
Physiol Genomics. 2011 Aug 24;43(16):951-64. doi: 10.1152/physiolgenomics.00040.2011. Epub 2011 Jun 14.
10
A dual negative regulation model of Toll-like receptor 4 signaling for endotoxin preconditioning in human endotoxemia.
Math Biosci. 2011 Aug;232(2):151-63. doi: 10.1016/j.mbs.2011.05.005. Epub 2011 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验