Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
Cell. 2012 Nov 9;151(4):885-899. doi: 10.1016/j.cell.2012.10.022.
The effectiveness of RNA interference (RNAi) in many organisms is potentiated through the signal-amplifying activity of a targeted RNA-directed RNA polymerase (RdRP) system that can convert a small population of exogenously-encountered dsRNA fragments into an abundant internal pool of small interfering RNA (siRNA). As for any biological amplification system, we expect an underlying architecture that will limit the ability of a randomly encountered trigger to produce an uncontrolled and self-escalating response. Investigating such limits in Caenorhabditis elegans, we find that feed-forward amplification is limited by biosynthetic and structural distinctions at the RNA level between (1) triggers that can produce amplification and (2) siRNA products of the amplification reaction. By assuring that initial (primary) siRNAs can act as triggers but not templates for activation, and that the resulting (secondary) siRNAs can enforce gene silencing on additional targets without unbridled trigger amplification, the system achieves substantial but fundamentally limited signal amplification.
RNA 干扰 (RNAi) 在许多生物体中的有效性通过靶向 RNA 指导的 RNA 聚合酶 (RdRP) 系统的信号放大活性得到增强,该系统可以将外源性遇到的一小部分双链 RNA 片段转化为大量内部的小干扰 RNA (siRNA) 池。对于任何生物放大系统,我们都期望存在一种基础架构,该架构将限制随机遇到的触发因素产生不受控制和自我加剧反应的能力。在秀丽隐杆线虫中研究这种限制,我们发现正反馈放大受到 RNA 水平上的生物合成和结构差异的限制,这些差异存在于 (1) 可以产生放大的触发因素和 (2) 放大反应的 siRNA 产物之间。通过确保初始 (初级) siRNA 可以作为触发因素而不是激活的模板,并且由此产生的 (次级) siRNA 可以在没有不受控制的触发放大的情况下对其他靶标实施基因沉默,该系统实现了实质性但从根本上有限的信号放大。