Suppr超能文献

多倍体甘草(豆科)对光胁迫的过度生理和转录组响应。

Transgressive physiological and transcriptomic responses to light stress in allopolyploid Glycine dolichocarpa (Leguminosae).

机构信息

Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA.

出版信息

Heredity (Edinb). 2013 Feb;110(2):160-70. doi: 10.1038/hdy.2012.77. Epub 2012 Nov 14.

Abstract

Allopolyploidy is often associated with increased photosynthetic capacity as well as enhanced stress tolerance. Excess light is a ubiquitous plant stress associated with photosynthetic light harvesting. We show that under chronic excess light, the capacity for non-photochemical quenching (NPQ(max)), a photoprotective mechanism, was higher in a recently formed natural allotetraploid (Glycine dolichocarpa, designated 'T2') than in its diploid progenitors (G. tomentella, 'D3'; and G. syndetika, 'D4'). This enhancement in NPQ(max) was due to an increase in energy-dependent quenching (qE) relative to D3, combined with an increase in zeaxanthin-dependent quenching (qZ) relative to D4. To explore the genetic basis for this phenotype, we profiled D3, D4 and T2 leaf transcriptomes and found that T2 overexpressed genes of the water-water cycle relative to both diploid progenitors, as well as genes involved in cyclic electron flow around photosystem I (CEF-PSI) and the xanthophyll cycle, relative to D4. Xanthophyll pigments have critical roles in NPQ, and the water-water cycle and CEF-PSI are non-photosynthetic electron transport pathways believed to facilitate NPQ formation. In the absence of CO(2), T2 also exhibited greater quantum yield of photosystem II than either diploid, indicating a greater capacity for non-photosynthetic electron transport. We postulate that, relative to its diploid progenitors, T2 is able to achieve higher NPQ(max) due to an increase in xanthophyll pigments coupled with enhanced electron flow through the water-water cycle and CEF-PSI.

摘要

异源多倍体通常与增加的光合作用能力以及增强的应激耐受性相关。过量的光是一种与光合作用光捕获相关的普遍植物应激。我们表明,在慢性过量光下,非光化学猝灭(NPQ(max))的能力,一种光保护机制,在最近形成的自然异源四倍体(Glycine dolichocarpa,指定为“T2”)中高于其二倍体祖先(G. tomentella,“D3”;和 G. syndetika,“D4”)。这种 NPQ(max)的增强是由于相对于 D3 的能量依赖性猝灭(qE)增加,以及相对于 D4 的玉米黄质依赖性猝灭(qZ)增加所致。为了探索这种表型的遗传基础,我们对 D3、D4 和 T2 叶片转录组进行了分析,发现 T2 相对于两个二倍体祖先过度表达了水-水循环基因,以及与循环电子流围绕光系统 I(CEF-PSI)和叶黄素循环有关的基因,相对于 D4。叶黄素色素在 NPQ 中具有关键作用,水-水循环和 CEF-PSI 是被认为有助于 NPQ 形成的非光合作用电子传递途径。在没有 CO2 的情况下,T2 还表现出比任何一个二倍体都更高的光系统 II 的量子产率,这表明它具有更大的非光合作用电子传递能力。我们假设,相对于其二倍体祖先,T2 能够通过增加叶黄素色素与增强水-水循环和 CEF-PSI 中的电子流来实现更高的 NPQ(max)。

相似文献

1
Transgressive physiological and transcriptomic responses to light stress in allopolyploid Glycine dolichocarpa (Leguminosae).
Heredity (Edinb). 2013 Feb;110(2):160-70. doi: 10.1038/hdy.2012.77. Epub 2012 Nov 14.
2
3
Enhanced rhizobial symbiotic capacity in an allopolyploid species of Glycine (Leguminosae).
Am J Bot. 2016 Oct;103(10):1771-1782. doi: 10.3732/ajb.1600060. Epub 2016 Aug 25.
4
Specific roles of cyclic electron flow around photosystem I in photosynthetic regulation in immature and mature leaves.
J Plant Physiol. 2017 Feb;209:76-83. doi: 10.1016/j.jplph.2016.11.013. Epub 2016 Dec 10.
8
Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress.
Photosynth Res. 2013 Nov;117(1-3):529-46. doi: 10.1007/s11120-013-9885-3. Epub 2013 Jul 17.
10
Is Photoprotection of PSII One of the Key Mechanisms for Drought Tolerance in Maize?
Int J Mol Sci. 2021 Dec 16;22(24):13490. doi: 10.3390/ijms222413490.

引用本文的文献

1
Polyploidy and diploidization in soybean.
Mol Breed. 2023 Jun 6;43(6):51. doi: 10.1007/s11032-023-01396-y. eCollection 2023 Jun.
2
Expanding the gene pool for soybean improvement with its wild relatives.
aBIOTECH. 2022 May 20;3(2):115-125. doi: 10.1007/s42994-022-00072-7. eCollection 2022 Jun.
3
Cross-kingdom transcriptomic trends in the evolution of hybrid gene expression.
J Evol Biol. 2022 Aug;35(8):1126-1137. doi: 10.1111/jeb.14059. Epub 2022 Jul 13.
4
Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids.
Plants (Basel). 2022 Jan 13;11(2):204. doi: 10.3390/plants11020204.
5
Polyploidy Improves Photosynthesis Regulation within the Complex (Ranunculaceae).
Biology (Basel). 2021 Aug 21;10(8):811. doi: 10.3390/biology10080811.
6
Ploidy-Dependent Effects of Light Stress on the Mode of Reproduction in the Complex (Ranunculaceae).
Front Plant Sci. 2020 Feb 20;11:104. doi: 10.3389/fpls.2020.00104. eCollection 2020.
7
Early consequences of allopolyploidy alter floral evolution in Nicotiana (Solanaceae).
BMC Plant Biol. 2019 Apr 27;19(1):162. doi: 10.1186/s12870-019-1771-5.

本文引用的文献

2
Effects of polyploidy on photosynthesis.
Photosynth Res. 1993 Feb;35(2):135-47. doi: 10.1007/BF00014744.
4
5
Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits.
Plant Cell Physiol. 2011 Sep;52(9):1560-8. doi: 10.1093/pcp/pcr098. Epub 2011 Jul 23.
6
Regulation of cyclic and linear electron flow in higher plants.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13317-22. doi: 10.1073/pnas.1110189108. Epub 2011 Jul 22.
7
Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF).
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12955-60. doi: 10.1073/pnas.1104734108. Epub 2011 Jul 18.
9
Reprint of: physiology of PSI cyclic electron transport in higher plants.
Biochim Biophys Acta. 2011 Aug;1807(8):906-11. doi: 10.1016/j.bbabio.2011.05.008. Epub 2011 May 13.
10
Ancestral polyploidy in seed plants and angiosperms.
Nature. 2011 May 5;473(7345):97-100. doi: 10.1038/nature09916. Epub 2011 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验