Institut für Mathematik, Johannes-Gutenberg-Universität Mainz, 55099 Mainz, Germany.
Genetics. 2013 Jan;193(1):255-90. doi: 10.1534/genetics.112.144329. Epub 2012 Nov 12.
A large offspring-number diploid biparental multilocus population model of Moran type is our object of study. At each time step, a pair of diploid individuals drawn uniformly at random contributes offspring to the population. The number of offspring can be large relative to the total population size. Similar "heavily skewed" reproduction mechanisms have been recently considered by various authors (cf. e.g., Eldon and Wakeley 2006, 2008) and reviewed by Hedgecock and Pudovkin (2011). Each diploid parental individual contributes exactly one chromosome to each diploid offspring, and hence ancestral lineages can coalesce only when in distinct individuals. A separation-of-timescales phenomenon is thus observed. A result of Möhle (1998) is extended to obtain convergence of the ancestral process to an ancestral recombination graph necessarily admitting simultaneous multiple mergers of ancestral lineages. The usual ancestral recombination graph is obtained as a special case of our model when the parents contribute only one offspring to the population each time. Due to diploidy and large offspring numbers, novel effects appear. For example, the marginal genealogy at each locus admits simultaneous multiple mergers in up to four groups, and different loci remain substantially correlated even as the recombination rate grows large. Thus, genealogies for loci far apart on the same chromosome remain correlated. Correlation in coalescence times for two loci is derived and shown to be a function of the coalescence parameters of our model. Extending the observations by Eldon and Wakeley (2008), predictions of linkage disequilibrium are shown to be functions of the reproduction parameters of our model, in addition to the recombination rate. Correlations in ratios of coalescence times between loci can be high, even when the recombination rate is high and sample size is large, in large offspring-number populations, as suggested by simulations, hinting at how to distinguish between different population models.
我们研究的对象是一个具有 Moran 类型的大型二倍体双亲多基因座种群模型。在每个时间步,一对随机均匀抽取的二倍体个体向种群贡献后代。后代的数量可以相对于总种群数量很大。最近,各种作者(例如,Eldon 和 Wakeley,2006,2008)考虑了类似的“严重偏斜”繁殖机制,并由 Hedgecock 和 Pudovkin(2011)进行了综述。每个二倍体亲代个体向每个二倍体后代贡献恰好一条染色体,因此只有在不同个体中才能融合祖先谱系。因此,观察到时间尺度分离现象。Möhle(1998)的一个结果被扩展,以获得祖先过程收敛到一个必然允许同时多个祖先谱系融合的祖先重组图。当父母每次向种群贡献一个后代时,我们的模型就得到了通常的祖先重组图作为特殊情况。由于二倍体和大量后代,出现了新的效应。例如,在每个基因座的边缘谱系允许同时在多达四个组中进行多个融合,并且即使重组率很大,不同的基因座仍然保持很大的相关性。因此,同一染色体上相距很远的基因座的谱系仍然相关。推导并证明了两个基因座的合并时间的相关性是我们模型的合并参数的函数。扩展了 Eldon 和 Wakeley(2008)的观察结果,表明连锁不平衡的预测是我们模型的繁殖参数的函数,除了重组率之外。在大型后代数量的种群中,即使在重组率高和样本量大的情况下,两个基因座之间的合并时间比的相关性也可能很高,这暗示了如何区分不同的种群模型。