Suppr超能文献

声悬浮在微流控装置中对活的哺乳动物细胞进行分选。

Acoustophoretic sorting of viable mammalian cells in a microfluidic device.

机构信息

Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106, USA.

出版信息

Anal Chem. 2012 Dec 18;84(24):10756-62. doi: 10.1021/ac3026674. Epub 2012 Dec 6.

Abstract

We report the first use of ultrasonic acoustophoresis for the label-free separation of viable and nonviable mammalian cells within a microfluidic device. Cells that have undergone apoptosis are physically smaller than viable cells, and our device exploits this fact to achieve efficient sorting based on the strong size dependence of acoustic radiation forces within a microchannel. As a model, we have selectively enriched viable MCF-7 breast tumor cells from heterogeneous mixtures of viable and nonviable cells. We found that this mode of separation is gentle and enables efficient, label-free isolation of viable cells from mixed samples containing 10(6) cells/mL at flow rates of up to 12 mL/h. We have extensively characterized the device, and we report the effects of piezoelectric voltage and sample flow rate on device performance and describe how these parameters can be tuned to optimize recovery, purity, or throughput.

摘要

我们报告了超声声流用于在微流控装置中无标记分离有活力和无活力的哺乳动物细胞的首次应用。经历凋亡的细胞比有活力的细胞物理上更小,我们的设备利用这一事实,通过在微通道内声辐射力的强烈尺寸依赖性来实现有效的基于尺寸的分选。作为模型,我们选择性地从有活力和无活力细胞的混合混合物中富集有活力的 MCF-7 乳腺癌肿瘤细胞。我们发现这种分离模式很温和,可以有效地从含有 10(6)个细胞/ml 的混合样品中无标记分离有活力的细胞,流速高达 12 ml/h。我们已经对该设备进行了广泛的表征,并报告了压电电压和样品流速对设备性能的影响,并描述了如何调整这些参数以优化回收率、纯度或吞吐量。

相似文献

1
Acoustophoretic sorting of viable mammalian cells in a microfluidic device.
Anal Chem. 2012 Dec 18;84(24):10756-62. doi: 10.1021/ac3026674. Epub 2012 Dec 6.
2
Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
Sensors (Basel). 2022 Jun 22;22(13):4709. doi: 10.3390/s22134709.
4
Microchannel acoustophoresis does not impact survival or function of microglia, leukocytes or tumor cells.
PLoS One. 2013 May 27;8(5):e64233. doi: 10.1371/journal.pone.0064233. Print 2013.
5
Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis.
Sci Rep. 2017 Dec 7;7(1):17161. doi: 10.1038/s41598-017-17200-9.
6
Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis.
Anal Chem. 2012 Sep 18;84(18):7954-62. doi: 10.1021/ac301723s. Epub 2012 Aug 28.
7
Acoustophoretic synchronization of mammalian cells in microchannels.
Anal Chem. 2010 Apr 1;82(7):3094-8. doi: 10.1021/ac100357u.
8
Microfluidic Sorting of Cells by Viability Based on Differences in Cell Stiffness.
Sci Rep. 2017 May 17;7(1):1997. doi: 10.1038/s41598-017-01807-z.
9
Label-free concentration of viable neurons, hESCs and cancer cells by means of acoustophoresis.
Integr Biol (Camb). 2016 Mar 14;8(3):332-40. doi: 10.1039/c5ib00288e.
10
Reducing WBC background in cancer cell separation products by negative acoustic contrast particle immuno-acoustophoresis.
Anal Chim Acta. 2018 Feb 13;1000:256-264. doi: 10.1016/j.aca.2017.11.064. Epub 2017 Dec 5.

引用本文的文献

2
Incoherent merger network for robust ratiometric gene expression response.
Nucleic Acids Res. 2023 Apr 11;51(6):2963-2973. doi: 10.1093/nar/gkad087.
3
I-LIFT (image-based laser-induced forward transfer) platform for manipulating encoded microparticles.
Biomicrofluidics. 2022 Dec 5;16(6):061101. doi: 10.1063/5.0131733. eCollection 2022 Dec.
4
Separation efficiency maximization in acoustofluidic systems: study of the sample launch-position.
RSC Adv. 2018 Nov 20;8(68):38955-38964. doi: 10.1039/c8ra08860h. eCollection 2018 Nov 16.
5
Two-Step Acoustophoresis Separation of Live Tumor Cells from Whole Blood.
Anal Chem. 2021 Dec 28;93(51):17076-17085. doi: 10.1021/acs.analchem.1c04050. Epub 2021 Dec 16.
6
Focalization Performance Study of a Novel Bulk Acoustic Wave Device.
Nanomaterials (Basel). 2021 Oct 6;11(10):2630. doi: 10.3390/nano11102630.
7
Three step flow focusing enables image-based discrimination and sorting of late stage 1 Haematococcus pluvialis cells.
PLoS One. 2021 Mar 29;16(3):e0249192. doi: 10.1371/journal.pone.0249192. eCollection 2021.
8
Bandpass sorting of heterogeneous cells using a single surface acoustic wave transducer pair.
Biomicrofluidics. 2021 Jan 27;15(1):014105. doi: 10.1063/5.0040181. eCollection 2021 Jan.
9
Acoustic Microfluidic Separation Techniques and Bioapplications: A Review.
Micromachines (Basel). 2020 Oct 2;11(10):921. doi: 10.3390/mi11100921.
10
Microfluidic Platform for the Isolation of Cancer-Cell Subpopulations Based on Single-Cell Glycolysis.
Anal Chem. 2020 May 19;92(10):6949-6957. doi: 10.1021/acs.analchem.9b05738. Epub 2020 Apr 30.

本文引用的文献

1
Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method.
Lab Chip. 2012 Jul 7;12(13):2337-44. doi: 10.1039/c2lc40120g. Epub 2012 Apr 20.
2
Acoustofluidics 10: scaling laws in acoustophoresis.
Lab Chip. 2012 May 7;12(9):1578-86. doi: 10.1039/c2lc21261g. Epub 2012 Mar 19.
3
Acoustofluidics 3: Continuum mechanics for ultrasonic particle manipulation.
Lab Chip. 2012 Jan 21;12(2):244-52. doi: 10.1039/c1lc20837c. Epub 2011 Nov 22.
6
Tunable acoustophoretic band-pass particle sorter.
Appl Phys Lett. 2010 Aug 9;97(6). doi: 10.1063/1.3467259. Epub 2010 Aug 13.
7
Label-free cell separation and sorting in microfluidic systems.
Anal Bioanal Chem. 2010 Aug;397(8):3249-67. doi: 10.1007/s00216-010-3721-9. Epub 2010 Apr 25.
8
Acoustophoretic synchronization of mammalian cells in microchannels.
Anal Chem. 2010 Apr 1;82(7):3094-8. doi: 10.1021/ac100357u.
9
Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer.
Nat Rev Cancer. 2010 Mar;10(3):213-21. doi: 10.1038/nrc2804. Epub 2010 Feb 19.
10
Perspectives on utilizing unique features of microfluidics technology for particle and cell sorting.
JALA Charlottesv Va. 2009 Dec 1;14(6):331-340. doi: 10.1016/j.jala.2009.06.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验