Suppr超能文献

一种结合小波和模糊聚类的方法用于对多光谱荧光原位杂交图像进行分类。

A hybrid approach of using wavelets and fuzzy clustering for classifying multispectral florescence in situ hybridization images.

作者信息

Wang Yu-Ping, Dandpat Ashok Kumar

机构信息

Computer Science and Electrical Engineering Department, School of Computing and Engineering, University of Missouri-Kansas City, MO 64110, USA.

出版信息

Int J Biomed Imaging. 2006;2006:54532. doi: 10.1155/IJBI/2006/54532. Epub 2006 Aug 7.

Abstract

Multicolor or multiplex fluorescence in situ hybridization (M-FISH) imaging is a recently developed molecular cytogenetic diagnosis technique for rapid visualization of genomic aberrations at the chromosomal level. By the simultaneous use of all 24 human chromosome painting probes, M-FISH imaging facilitates precise identification of complex chromosomal rearrangements that are responsible for cancers and genetic diseases. The current approaches, however, cannot have the precision sufficient for clinical use. The reliability of the technique depends primarily on the accurate pixel-wise classification, that is, assigning each pixel into one of the 24 classes of chromosomes based on its six-channel spectral representations. In the paper we introduce a novel approach to improve the accuracy of pixel-wise classification. The approach is based on the combination of fuzzy clustering and wavelet normalization. Two wavelet-based algorithms are used to reduce redundancies and to correct misalignments between multichannel FISH images. In comparison with conventional algorithms, the wavelet-based approaches offer more advantages such as the adaptive feature selection and accurate image registration. The algorithms have been tested on images from normal cells, showing the improvement in classification accuracy. The increased accuracy of pixel-wise classification will improve the reliability of the M-FISH imaging technique in identifying subtle and cryptic chromosomal abnormalities for cancer diagnosis and genetic disorder research.

摘要

多色或多重荧光原位杂交(M-FISH)成像是一种最近开发的分子细胞遗传学诊断技术,用于在染色体水平快速可视化基因组畸变。通过同时使用所有24种人类染色体涂染探针,M-FISH成像有助于精确识别导致癌症和遗传疾病的复杂染色体重排。然而,目前的方法精度还不足以用于临床。该技术的可靠性主要取决于精确的逐像素分类,即根据其六通道光谱表示将每个像素分配到24种染色体类别之一。在本文中,我们介绍了一种提高逐像素分类准确性的新方法。该方法基于模糊聚类和小波归一化的结合。使用两种基于小波的算法来减少冗余并校正多通道FISH图像之间的错位。与传统算法相比,基于小波的方法具有更多优势,如自适应特征选择和精确的图像配准。这些算法已在正常细胞图像上进行了测试,显示出分类准确性的提高。逐像素分类准确性的提高将提高M-FISH成像技术在识别癌症诊断和遗传疾病研究中细微和隐匿染色体异常方面的可靠性。

相似文献

1
5
A patch-based tensor decomposition algorithm for M-FISH image classification.
Cytometry A. 2017 Jun;91(6):622-632. doi: 10.1002/cyto.a.22864. Epub 2016 May 3.
6
Classification of multicolor fluorescence in situ hybridization (M-FISH) images with sparse representation.
IEEE Trans Nanobioscience. 2012 Jun;11(2):111-8. doi: 10.1109/TNB.2012.2189414.
7
Enhancement of the classification of multichannel chromosome images using support vector machines.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3601-4. doi: 10.1109/IEMBS.2009.5333757.
9
A multichannel watershed-based segmentation method for multispectral chromosome classification.
IEEE Trans Med Imaging. 2008 May;27(5):697-708. doi: 10.1109/TMI.2008.916962.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验