Department of Molecular, Cell and Developmental Biology, and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
Dev Biol. 2013 Jan 15;373(2):281-9. doi: 10.1016/j.ydbio.2012.11.009. Epub 2012 Nov 17.
Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord is present in many chordates. We find that ascidian notochord taper involves three main mechanisms: Planar Cell Polarity (PCP) pathway-independent sibling cell volume asymmetries that precede notochord cell intercalation; the developmental timing of intercalation, which proceeds from the anterior and posterior towards the middle; and the differential rates of notochord cell narrowing after intercalation. A quantitative model shows how the morphology of an entire developing organ can be controlled by this small set of cellular mechanisms.
在这里,我们使用整体成像以及计算分割和分析方法来量化简单器官(海鞘 Ciona savignyi 的脊索)发育过程中多个阶段的每个细胞的形状。我们发现,交错脊索中的细胞形状强烈依赖于前后(AP)位置,脊索中间的细胞始终比前部或后部的细胞更宽。许多脊索动物都具有这种锥形脊索的形态特征。我们发现,海鞘脊索变细涉及三个主要机制:平面细胞极性(PCP)途径不依赖的同胞细胞体积不对称性,先于脊索细胞插入;插入的发育时间,从前部和后部向中部进行;以及插入后脊索细胞变窄的差异速率。一个定量模型表明,整个发育中的器官的形态如何可以由这一小组细胞机制来控制。