Suppr超能文献

整体器官细胞形态分析揭示了尾索动物脊索锥形的发育基础。

Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper.

机构信息

Department of Molecular, Cell and Developmental Biology, and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.

出版信息

Dev Biol. 2013 Jan 15;373(2):281-9. doi: 10.1016/j.ydbio.2012.11.009. Epub 2012 Nov 17.

Abstract

Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord is present in many chordates. We find that ascidian notochord taper involves three main mechanisms: Planar Cell Polarity (PCP) pathway-independent sibling cell volume asymmetries that precede notochord cell intercalation; the developmental timing of intercalation, which proceeds from the anterior and posterior towards the middle; and the differential rates of notochord cell narrowing after intercalation. A quantitative model shows how the morphology of an entire developing organ can be controlled by this small set of cellular mechanisms.

摘要

在这里,我们使用整体成像以及计算分割和分析方法来量化简单器官(海鞘 Ciona savignyi 的脊索)发育过程中多个阶段的每个细胞的形状。我们发现,交错脊索中的细胞形状强烈依赖于前后(AP)位置,脊索中间的细胞始终比前部或后部的细胞更宽。许多脊索动物都具有这种锥形脊索的形态特征。我们发现,海鞘脊索变细涉及三个主要机制:平面细胞极性(PCP)途径不依赖的同胞细胞体积不对称性,先于脊索细胞插入;插入的发育时间,从前部和后部向中部进行;以及插入后脊索细胞变窄的差异速率。一个定量模型表明,整个发育中的器官的形态如何可以由这一小组细胞机制来控制。

相似文献

1
Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper.
Dev Biol. 2013 Jan 15;373(2):281-9. doi: 10.1016/j.ydbio.2012.11.009. Epub 2012 Nov 17.
2
Ascidian notochord morphogenesis.
Dev Dyn. 2007 Jul;236(7):1748-57. doi: 10.1002/dvdy.21184.
4
Specification of notochord cells in the ascidian embryo analysed with a specific monoclonal antibody.
Cell Differ Dev. 1990 Apr;30(1):43-53. doi: 10.1016/0922-3371(90)90073-6.
5
A one-dimensional model of PCP signaling: polarized cell behavior in the notochord of the ascidian Ciona.
Dev Biol. 2014 Nov 1;395(1):120-30. doi: 10.1016/j.ydbio.2014.08.023. Epub 2014 Aug 28.
7
Iterative and Complex Asymmetric Divisions Control Cell Volume Differences in Ciona Notochord Tapering.
Curr Biol. 2019 Oct 21;29(20):3466-3477.e4. doi: 10.1016/j.cub.2019.08.056. Epub 2019 Oct 10.
8
Cellular Processes of Notochord Formation.
Adv Exp Med Biol. 2018;1029:165-177. doi: 10.1007/978-981-10-7545-2_15.
9
Anterior-posterior regionalized gene expression in the Ciona notochord.
Dev Dyn. 2014 Apr;243(4):612-620. doi: 10.1002/dvdy.24101. Epub 2013 Dec 27.
10
Cellular morphogenesis in ascidians: how to shape a simple tadpole.
Curr Opin Genet Dev. 2006 Aug;16(4):399-405. doi: 10.1016/j.gde.2006.06.004. Epub 2006 Jun 19.

引用本文的文献

1
The ion channel Anoctamin 10/TMEM16K coordinates organ morphogenesis across scales in the urochordate notochord.
PLoS Biol. 2024 Aug 22;22(8):e3002762. doi: 10.1371/journal.pbio.3002762. eCollection 2024 Aug.
2
Single-cell analysis of cell fate bifurcation in the chordate Ciona.
BMC Biol. 2021 Aug 31;19(1):180. doi: 10.1186/s12915-021-01122-0.
3
Single-cell morphometrics reveals ancestral principles of notochord development.
Development. 2021 Aug 15;148(16). doi: 10.1242/dev.199430. Epub 2021 Aug 19.
4
Ciona Brachyury proximal and distal enhancers have different FGF dose-response relationships.
PLoS Genet. 2021 Jan 19;17(1):e1009305. doi: 10.1371/journal.pgen.1009305. eCollection 2021 Jan.
5
Multiple inputs into a posterior-specific regulatory network in the Ciona notochord.
Dev Biol. 2019 Apr 15;448(2):136-146. doi: 10.1016/j.ydbio.2018.09.021. Epub 2018 Oct 1.
6
Dynamic interplay of cell fate, polarity and force generation in ascidian embryos.
Curr Opin Genet Dev. 2018 Aug;51:67-77. doi: 10.1016/j.gde.2018.06.013. Epub 2018 Jul 11.
7
Morphometrics of complex cell shapes: lobe contribution elliptic Fourier analysis (LOCO-EFA).
Development. 2018 Mar 20;145(6):dev156778. doi: 10.1242/dev.156778.
8
Functional and evolutionary insights from the notochord transcriptome.
Development. 2017 Sep 15;144(18):3375-3387. doi: 10.1242/dev.156174.
9
ANISEED 2015: a digital framework for the comparative developmental biology of ascidians.
Nucleic Acids Res. 2016 Jan 4;44(D1):D808-18. doi: 10.1093/nar/gkv966. Epub 2015 Sep 29.
10
Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy.
Cell. 2015 Aug 13;162(4):823-35. doi: 10.1016/j.cell.2015.07.010. Epub 2015 Jul 30.

本文引用的文献

1
Ciona genetics.
Methods Mol Biol. 2011;770:401-22. doi: 10.1007/978-1-61779-210-6_15.
3
Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination.
Curr Biol. 2010 Sep 14;20(17):1499-510. doi: 10.1016/j.cub.2010.06.075. Epub 2010 Aug 5.
4
The advantages of a tapered whisker.
PLoS One. 2010 Jan 20;5(1):e8806. doi: 10.1371/journal.pone.0008806.
5
High-content screening: a decade of evolution.
J Biomol Screen. 2010 Jan;15(1):1-9. doi: 10.1177/1087057109353790. Epub 2009 Dec 11.
6
Cells segmentation from 3-D confocal images of early zebrafish embryogenesis.
IEEE Trans Image Process. 2010 Mar;19(3):770-81. doi: 10.1109/TIP.2009.2033629. Epub 2009 Oct 6.
7
Biology and physics of cell shape changes in development.
Curr Biol. 2009 Sep 15;19(17):R790-9. doi: 10.1016/j.cub.2009.07.029.
8
Strabismus regulates asymmetric cell divisions and cell fate determination in the mouse brain.
J Cell Biol. 2009 Apr 6;185(1):59-66. doi: 10.1083/jcb.200807073. Epub 2009 Mar 30.
9
Tube formation by complex cellular processes in Ciona intestinalis notochord.
Dev Biol. 2009 Jun 15;330(2):237-49. doi: 10.1016/j.ydbio.2009.03.015. Epub 2009 Mar 24.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验