Suppr超能文献

仅一端锚定在膜上的 WALP 肽的性质。

Properties of membrane-incorporated WALP peptides that are anchored on only one end.

机构信息

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.

出版信息

Biochemistry. 2012 Dec 18;51(50):10066-74. doi: 10.1021/bi301394z. Epub 2012 Dec 3.

Abstract

Peptides of the "WALP" family, acetyl-GWW(LA)(n)LWWA-[ethanol]amide, have proven to be opportune models for investigating lipid-peptide interactions. Because the average orientations and motional behavior of the N- and C-terminal Trp (W) residues differ, it is of interest to investigate how the positions of the tryptophans influence the properties of the membrane-incorporated peptides. To address this question, we synthesized acetyl-GGWW(LA)(n)-ethanolamide and acetyl-(AL)(n)WWG-ethanolamide, in which n = 4 or 8, which we designate as "N-anchored" and "C-anchored" peptides, respectively. Selected (2)H or (15)N labels were incorporated for solid-state nuclear magnetic resonance (NMR) spectroscopy. These peptides can be considered "half"-anchored WALP peptides, having only one pair of interfacial Trp residues near either the amino or the carboxyl terminus. The hydrophobic lengths of the (n = 8) peptides are similar to that of WALP23. These longer half-anchored WALP peptides incorporate into lipid bilayers as α-helices, as reflected in their circular dichroism spectra. Solid-state NMR experiments indicate that the longer peptide helices assume defined transmembrane orientations with small non-zero average tilt angles and moderate to high dynamic averaging in bilayer membranes of 1,2-dioleoylphosphatidylcholine, 1,2-dimyristoylphosphatidylcholine, and 1,2-dilauroylphosphatidylcholine. The intrinsically small apparent tilt angles suggest that interactions of aromatic residues with lipid headgroups may play an important role in determining the magnitude of the peptide tilt in the bilayer membrane. The shorter (n = 4) peptides, in stark contrast to the longer peptides, display NMR spectra that are characteristic of greatly reduced motional averaging, probably because of peptide aggregation in the bilayer environment, and CD spectra that are characteristic of β-structure.

摘要

“WALP”家族的肽,乙酰-GWW(LA)(n)LWWA-[乙醇]酰胺,已被证明是研究脂质-肽相互作用的合适模型。由于 N 端和 C 端色氨酸(W)残基的平均取向和运动行为不同,因此研究色氨酸的位置如何影响嵌入膜中的肽的性质很有意思。为了解决这个问题,我们合成了乙酰-GGWW(LA)(n)-乙醇酰胺和乙酰-(AL)(n)WWG-乙醇酰胺,其中 n = 4 或 8,我们分别将其指定为“N 锚定”和“C 锚定”肽。为固态核磁共振(NMR)光谱学选择了(2)H 或(15)N 标记。这些肽可以被认为是“半”-锚定 WALP 肽,只有一对界面色氨酸残基靠近氨基或羧基末端。(n = 8)肽的疏水性长度与 WALP23 相似。这些较长的半锚定 WALP 肽以 α-螺旋的形式嵌入脂质双层,这反映在它们的圆二色性光谱中。固态 NMR 实验表明,较长的肽螺旋在 1,2-二油酰基磷脂酰胆碱、1,2-二肉豆蔻酰基磷脂酰胆碱和 1,2-二月桂酰基磷脂酰胆碱双层膜中呈现出定义明确的跨膜取向,具有较小的非零平均倾斜角和中等至高的动态平均。内在的小表观倾斜角表明,芳香族残基与脂质头部基团的相互作用可能在确定肽在双层膜中的倾斜程度方面起着重要作用。与较长的肽相比,较短的(n = 4)肽的 NMR 光谱特征是大幅度降低的运动平均,这可能是由于肽在双层环境中的聚集,以及 CD 光谱特征是β-结构。

相似文献

1
Properties of membrane-incorporated WALP peptides that are anchored on only one end.
Biochemistry. 2012 Dec 18;51(50):10066-74. doi: 10.1021/bi301394z. Epub 2012 Dec 3.
2
Tyrosine replacing tryptophan as an anchor in GWALP peptides.
Biochemistry. 2012 Mar 13;51(10):2044-53. doi: 10.1021/bi201732e. Epub 2012 Mar 5.
3
Charged or aromatic anchor residue dependence of transmembrane peptide tilt.
J Biol Chem. 2010 Oct 8;285(41):31723-30. doi: 10.1074/jbc.M110.152470. Epub 2010 Jul 28.
4
Orientation and motion of tryptophan interfacial anchors in membrane-spanning peptides.
Biochemistry. 2007 Jun 26;46(25):7514-24. doi: 10.1021/bi700082v. Epub 2007 May 27.
6
Single tryptophan and tyrosine comparisons in the N-terminal and C-terminal interface regions of transmembrane GWALP peptides.
J Phys Chem B. 2013 Nov 7;117(44):13786-94. doi: 10.1021/jp407542e. Epub 2013 Oct 29.
7
Proline kink angle distributions for GWALP23 in lipid bilayers of different thicknesses.
Biochemistry. 2012 May 1;51(17):3554-64. doi: 10.1021/bi300281k. Epub 2012 Apr 18.
9
Response of GWALP transmembrane peptides to changes in the tryptophan anchor positions.
Biochemistry. 2011 Sep 6;50(35):7522-35. doi: 10.1021/bi2006459. Epub 2011 Aug 12.

引用本文的文献

1
Transmembrane Helix Integrity versus Fraying To Expose Hydrogen Bonds at a Membrane-Water Interface.
Biochemistry. 2019 Feb 12;58(6):633-645. doi: 10.1021/acs.biochem.8b01119. Epub 2019 Jan 3.
3
Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices.
Biochemistry. 2016 Nov 15;55(45):6337-6343. doi: 10.1021/acs.biochem.6b00896. Epub 2016 Nov 4.
4
Kinetics of peptide folding in lipid membranes.
Biopolymers. 2015 Jul;104(4):281-90. doi: 10.1002/bip.22640.
5
Peptide-lipid interactions: experiments and applications.
Int J Mol Sci. 2013 Sep 12;14(9):18758-89. doi: 10.3390/ijms140918758.

本文引用的文献

1
Proline kink angle distributions for GWALP23 in lipid bilayers of different thicknesses.
Biochemistry. 2012 May 1;51(17):3554-64. doi: 10.1021/bi300281k. Epub 2012 Apr 18.
2
Tyrosine replacing tryptophan as an anchor in GWALP peptides.
Biochemistry. 2012 Mar 13;51(10):2044-53. doi: 10.1021/bi201732e. Epub 2012 Mar 5.
3
Hydrophobic mismatch of mobile transmembrane helices: Merging theory and experiments.
Biochim Biophys Acta. 2012 May;1818(5):1242-9. doi: 10.1016/j.bbamem.2012.01.023. Epub 2012 Feb 2.
5
Response of GWALP transmembrane peptides to changes in the tryptophan anchor positions.
Biochemistry. 2011 Sep 6;50(35):7522-35. doi: 10.1021/bi2006459. Epub 2011 Aug 12.
6
Solid-state NMR ensemble dynamics as a mediator between experiment and simulation.
Biophys J. 2011 Jun 22;100(12):2922-8. doi: 10.1016/j.bpj.2011.02.063.
7
Structural formation of huntingtin exon 1 aggregates probed by small-angle neutron scattering.
Biophys J. 2011 May 18;100(10):2504-12. doi: 10.1016/j.bpj.2011.04.022.
8
Charged or aromatic anchor residue dependence of transmembrane peptide tilt.
J Biol Chem. 2010 Oct 8;285(41):31723-30. doi: 10.1074/jbc.M110.152470. Epub 2010 Jul 28.
10
Order parameters of a transmembrane helix in a fluid bilayer: case study of a WALP peptide.
Biophys J. 2010 May 19;98(9):1864-72. doi: 10.1016/j.bpj.2010.01.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验