Suppr超能文献

球形神经元中的钙扩散建模。缓冲特性的相关性。

Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties.

作者信息

Sala F, Hernández-Cruz A

机构信息

Howard Hughes Medical Institute, Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794.

出版信息

Biophys J. 1990 Feb;57(2):313-24. doi: 10.1016/S0006-3495(90)82533-9.

Abstract

We have developed a calcium diffusion model for a spherical neuron which incorporates calcium influx and extrusion through the plasma membrane as well as three calcium buffer systems with different capacities, mobilities, and kinetics. The model allows us to calculate the concentration of any of the species involved at all locations in the cell and can be used to account for experimental data obtained with high-speed Ca imaging techniques. The influence of several factors on the Ca2+ transients is studied. The relationship between peak [Ca2+]i and calcium load is shown to be nonlinear and to depend on buffer characteristics. The time course of the Ca2+ signals is also shown to be dependent on buffer properties. In particular, buffer mobility strongly determines the size and time course of Ca2+ signals in the cell interior. The model predicts that the presence of exogenous buffer, such as fura-2, modifies the Ca2+ transients to a variable extent depending on its proportion relative to the natural, intrinsic buffers. The conclusions about natural calcium buffer properties that can be derived from Ca imaging experiments are discussed.

摘要

我们已经为球形神经元开发了一种钙扩散模型,该模型纳入了通过质膜的钙内流和外排,以及具有不同容量、迁移率和动力学的三种钙缓冲系统。该模型使我们能够计算细胞内所有位置所涉及的任何物种的浓度,并可用于解释通过高速钙成像技术获得的实验数据。研究了几个因素对Ca2+瞬变的影响。峰值[Ca2+]i与钙负荷之间的关系显示为非线性,并取决于缓冲特性。Ca2+信号的时间进程也显示取决于缓冲特性。特别是,缓冲迁移率强烈决定了细胞内部Ca2+信号的大小和时间进程。该模型预测,外源性缓冲剂(如fura-2)的存在会根据其相对于天然固有缓冲剂的比例在不同程度上改变Ca2+瞬变。讨论了可从钙成像实验得出的关于天然钙缓冲特性的结论。

相似文献

1
Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties.
Biophys J. 1990 Feb;57(2):313-24. doi: 10.1016/S0006-3495(90)82533-9.
3
[Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model.
Biophys J. 1995 May;68(5):1752-66. doi: 10.1016/S0006-3495(95)80352-8.
4
Dynamic, spatially nonuniform calcium regulation in frog rods exposed to light.
J Neurophysiol. 1996 Sep;76(3):1991-2004. doi: 10.1152/jn.1996.76.3.1991.
5
An Excel-based model of Ca2+ diffusion and fura 2 measurements in a spherical cell.
Am J Physiol Cell Physiol. 2004 Feb;286(2):C342-8. doi: 10.1152/ajpcell.00270.2003. Epub 2003 Sep 24.
6
Endogenous buffers limit the spread of free calcium in hair cells.
Biophys J. 1997 Sep;73(3):1243-52. doi: 10.1016/S0006-3495(97)78157-8.
8
Calcium gradients and buffers in bovine chromaffin cells.
J Physiol. 1992 May;450:273-301. doi: 10.1113/jphysiol.1992.sp019127.
10
Time courses of calcium and calcium-bound buffers following calcium influx in a model cell.
Biophys J. 1993 Jan;64(1):77-91. doi: 10.1016/S0006-3495(93)81342-0.

引用本文的文献

2
Computational model of the spatiotemporal synergetic system dynamics of calcium, IP and dopamine in neuron cells.
Cogn Neurodyn. 2024 Oct;18(5):2709-2729. doi: 10.1007/s11571-024-10117-w. Epub 2024 May 6.
3
Adsorption and Permeation Events in Molecular Diffusion.
Molecules. 2024 Oct 23;29(21):5012. doi: 10.3390/molecules29215012.
4
Computational modeling predicts ephemeral acidic microdomains in the glutamatergic synaptic cleft.
Biophys J. 2021 Dec 21;120(24):5575-5591. doi: 10.1016/j.bpj.2021.11.011. Epub 2021 Nov 11.
5
Activity-dependent compensation of cell size is vulnerable to targeted deletion of ion channels.
Sci Rep. 2020 Sep 29;10(1):15989. doi: 10.1038/s41598-020-72977-6.
6
Intracellular Calcium Responses Encode Action Potential Firing in Spinal Cord Lamina I Neurons.
J Neurosci. 2020 Jun 3;40(23):4439-4456. doi: 10.1523/JNEUROSCI.0206-20.2020. Epub 2020 Apr 27.
7
Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells.
Hear Res. 2019 May;376:11-21. doi: 10.1016/j.heares.2018.11.002. Epub 2018 Nov 16.
8
Calcium as a signal integrator in developing epithelial tissues.
Phys Biol. 2018 May 16;15(5):051001. doi: 10.1088/1478-3975/aabb18.
9
Extension of Rapid Buffering Approximation to Ca Buffers with Two Binding Sites.
Biophys J. 2018 Mar 13;114(5):1204-1215. doi: 10.1016/j.bpj.2018.01.019.
10
Fluorescent Ca indicators directly inhibit the Na,K-ATPase and disrupt cellular functions.
Sci Signal. 2018 Jan 30;11(515):eaal2039. doi: 10.1126/scisignal.aal2039.

本文引用的文献

1
Calcium dependence of the inactivation of calcium currents in skeletal muscle fibers of an insect.
Science. 1981 Jul 10;213(4504):224-6. doi: 10.1126/science.213.4504.224.
2
Movements of labelled calcium in squid giant axons.
J Physiol. 1957 Sep 30;138(2):253-81. doi: 10.1113/jphysiol.1957.sp005850.
3
Comparison of calcium-modulated proteins from vertebrate brains.
Biochemistry. 1980 Jun 10;19(12):2672-6. doi: 10.1021/bi00553a020.
4
Intracellular calcium accumulation during depolarization in a molluscan neurone.
J Physiol. 1980 Nov;308:259-85. doi: 10.1113/jphysiol.1980.sp013471.
7
Non-uniform Ca2+ buffer distribution in a nerve cell body.
Nature. 1980 Aug 21;286(5775):816-7. doi: 10.1038/286816a0.
9
Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum.
Am J Physiol. 1983 Jul;245(1):C1-14. doi: 10.1152/ajpcell.1983.245.1.C1.
10
Calcium messenger system: an integrated view.
Physiol Rev. 1984 Jul;64(3):938-84. doi: 10.1152/physrev.1984.64.3.938.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验