Oehring Sophie C, Woodcroft Ben J, Moes Suzette, Wetzel Johanna, Dietz Olivier, Pulfer Andreas, Dekiwadia Chaitali, Maeser Pascal, Flueck Christian, Witmer Kathrin, Brancucci Nicolas M B, Niederwieser Igor, Jenoe Paul, Ralph Stuart A, Voss Till S
Genome Biol. 2012 Nov 26;13(11):R108. doi: 10.1186/gb-2012-13-11-r108.
The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome.
We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways.
Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.
疟疾研究的后基因组时代为疟原虫生物学提供了前所未有的见解。然而,由于与模式真核生物的进化距离较大,我们对疟原虫生物学中的许多过程缺乏深入了解。一个例子是细胞核,它通过大多未知的机制以发育和细胞周期特异性的方式控制寄生虫基因组。为了详细研究这个重要的细胞器,我们对恶性疟原虫的核蛋白质组进行了综合分析。
我们结合了高精度质谱和生物信息学方法,首次展示了通过实验确定的恶性疟原虫核心核蛋白质组。除了大量与已知核过程相关的因子外,所有检测到的蛋白质中有三分之一没有功能注释,包括许多门或属特异性因子。重要的是,使用30个转基因细胞系进行的广泛实验验证证实了该清单的高特异性,并揭示了迄今未表征蛋白质的独特核定位模式。此外,我们的详细分析确定了可能与基因转录途径相关的新蛋白质结构域,并为核区室和过程(包括调节复合物、核仁、核孔和核输入途径)提供了重要的新见解。
我们的研究为疟原虫细胞核的生物学提供了全面的新见解,并将作为剖析疟原虫中一般和寄生虫特异性核过程的重要平台。此外,作为在任何原生生物中表征的第一个核蛋白质组,它将为研究核生物学的进化方面提供重要资源。