Environmental Systems Analysis (ESA), Wageningen University (WU), The Netherlands.
Sci Total Environ. 2013 Jan 15;443:163-72. doi: 10.1016/j.scitotenv.2012.10.048. Epub 2012 Nov 24.
A life cycle assessment (LCA) was conducted for Ethiopian rose cultivation. The LCA covered the cradle-to-gate production of all inputs to Ethiopian rose cultivation up to, and including transport to the Ethiopian airport. Primary data were collected about materials and resources used as inputs to, and about the product outputs from 21 farms in 4 geographical regions (i.e. Holleta, Sebeta, Debre Ziet, and Ziway). The primary data were imported in, and analyzed with the SimaPro7.3 software. Data for the production of used inputs were taken from the EcoInvent®2.0 database. Emissions from input use on the farms were quantified based on estimates and emission factors from various studies and guidelines. The resulting life cycle inventory (LCI) table was next evaluated with the CML 2 baseline 2000 V2/world, 1990/characterization method to quantify the contribution of the rose cultivation chain to 10 environmental impact categories. The set of collected primary data was comprehensive and of high quality. The data point to an intensive use of fertilizers, pesticides, and greenhouse plastic. Production and use of these inputs also represent the major contributors in all environmental impact categories. The largest contribution comes from the production of the used fertilizers, specifically nitrogen-based fertilizers. The use of calcium nitrate dominates Abiotic Depletion (AD), Global Warming (GW), Human Toxicity (HT) and Marine Aquatic Ecotoxicity (MAET). It also makes a large contribution to Ozone Depletion (OD), Acidification (AD) and Fresh water Aquatic Ecotoxicity (FAET). Acidification (AC) and Eutrophication (EU) are dominated by the emission of fertilizers. The emissions from the use of pesticides, especially insecticides dominate Terrestrial Ecotoxicity (TE) and make a considerable contribution to Freshwater Aquatic Ecotoxicity (FAET) and Photochemical Oxidation (PhO). There is no visible contribution from the use of pesticides to the other toxicity categories. Production and use of greenhouse plastic are another important contributors, and just a bit less than the contribution of calcium nitrate to Abiotic Depletion (AD). The results of this study clearly indicate nutrient management and emissions from pesticide use, especially insecticides, as a focus point for environmental optimization of the rose cultivation sector in Ethiopia.
对埃塞俄比亚玫瑰种植进行了生命周期评估(LCA)。该 LCA 涵盖了埃塞俄比亚玫瑰种植的摇篮到大门生产,包括运输到埃塞俄比亚机场。从 4 个地区(即 Holleta、Sebeta、Debre Ziet 和 Ziway)的 21 个农场收集了有关投入物使用的主要数据以及产品输出。将主要数据导入 SimaPro7.3 软件进行分析。用于生产使用投入物的数据取自 EcoInvent®2.0 数据库。根据来自各种研究和指南的估算和排放因子,对农场投入物使用的排放进行了量化。然后,使用 CML 2 基线 2000 V2/world、1990/特征化方法评估由此产生的生命周期清单(LCI)表,以量化玫瑰种植链对 10 个环境影响类别的贡献。收集的主要数据集全面且质量高。这些数据表明,肥料、农药和温室塑料的使用非常密集。这些投入物的生产和使用也是所有环境影响类别的主要贡献者。最大的贡献来自于用过的肥料,特别是基于氮的肥料的生产。硝酸钙的使用在非生物消耗(AD)、全球变暖(GW)、人类毒性(HT)和海洋水生生态毒性(MAET)方面占主导地位。它对臭氧消耗(OD)、酸化(AD)和淡水水生生态毒性(FAET)也有很大的贡献。酸化(AC)和富营养化(EU)主要由肥料的排放引起。农药,特别是杀虫剂的使用排放物主导着陆地生态毒性(TE),并对淡水水生生态毒性(FAET)和光化学氧化(PhO)有相当大的贡献。农药的使用对其他毒性类别没有明显的贡献。温室塑料的生产和使用是另一个重要的贡献者,略低于硝酸钙对非生物消耗(AD)的贡献。本研究的结果清楚地表明,养分管理和农药使用排放,特别是杀虫剂的使用排放,是埃塞俄比亚玫瑰种植部门环境优化的重点。