Suppr超能文献

探究 KCNE1 和 KCNE2 对 KCNQ1 调节的结构基础差异。

Probing the structural basis for differential KCNQ1 modulation by KCNE1 and KCNE2.

机构信息

Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA.

出版信息

J Gen Physiol. 2012 Dec;140(6):653-69. doi: 10.1085/jgp.201210847.

Abstract

KCNE1 associates with KCNQ1 to increase its current amplitude and slow the activation gating process, creating the slow delayed rectifier channel that functions as a "repolarization reserve" in human heart. The transmembrane domain (TMD) of KCNE1 plays a key role in modulating KCNQ1 pore conductance and gating kinetics, and the extracellular juxtamembrane (EJM) region plays a modulatory role by interacting with the extracellular surface of KCNQ1. KCNE2 is also expressed in human heart and can associate with KCNQ1 to suppress its current amplitude and slow the deactivation gating process. KCNE1 and KCNE2 share the transmembrane topology and a high degree of sequence homology in TMD and surrounding regions. The structural basis for their distinctly different effects on KCNQ1 is not clear. To address this question, we apply cysteine (Cys) scanning mutagenesis to TMDs and EJMs of KCNE1 and KCNE2. We analyze the patterns of functional perturbation to identify high impact positions, and probe disulfide formation between engineered Cys side chains on KCNE subunits and native Cys on KCNQ1. We also use methanethiosulfonate reagents to probe the relationship between EJMs of KCNE subunits and KCNQ1. Our data suggest that the TMDs of both KCNE subunits are at about the same location but interact differently with KCNQ1. In particular, the much closer contact of KCNE2 TMD with KCNQ1, relative to that of KCNE1, is expected to impact the allosteric modulation of KCNQ1 pore conductance and may explain their differential effects on the KCNQ1 current amplitude. KCNE1 and KCNE2 also differ in the relationship between their EJMs and KCNQ1. Although the EJM of KCNE1 makes intimate contacts with KCNQ1, there appears to be a crevice between KCNQ1 and KCNE2. This putative crevice may perturb the electrical field around the voltage-sensing domain of KCNQ1, contributing to the differential effects of KCNE2 versus KCNE1 on KCNQ1 gating kinetics.

摘要

KCNE1 与 KCNQ1 结合可增加其电流幅度并减缓激活门控过程,从而形成在人心肌中起“复极化储备”作用的慢延迟整流通道。KCNE1 的跨膜结构域(TMD)在调节 KCNQ1 孔道电导和门控动力学方面起着关键作用,而细胞外连接膜(EJM)区域通过与 KCNQ1 的细胞外表面相互作用发挥调节作用。KCNE2 也在人心肌中表达,可与 KCNQ1 结合以抑制其电流幅度并减缓失活门控过程。KCNE1 和 KCNE2 具有相同的跨膜拓扑结构和 TMD 及周围区域的高度序列同源性。它们对 KCNQ1 产生截然不同影响的结构基础尚不清楚。为解决这一问题,我们应用半胱氨酸(Cys)扫描突变技术对 KCNE1 和 KCNE2 的 TMD 和 EJM 进行研究。我们分析功能扰动模式以确定高影响位置,并探测工程化 Cys 侧链与 KCNQ1 上天然 Cys 之间形成的二硫键。我们还使用甲硫磺酸酯试剂来探测 KCNE 亚基的 EJM 与 KCNQ1 之间的关系。我们的数据表明,两个 KCNE 亚基的 TMD 处于大致相同的位置,但与 KCNQ1 的相互作用方式不同。特别是,与 KCNE1 相比,KCNE2 TMD 与 KCNQ1 的更紧密接触预计会影响 KCNQ1 孔道电导的变构调节,并可能解释它们对 KCNQ1 电流幅度的不同影响。KCNE1 和 KCNE2 之间的 EJM 与 KCNQ1 之间的关系也不同。尽管 KCNE1 的 EJM 与 KCNQ1 紧密接触,但 KCNQ1 和 KCNE2 之间似乎存在一个裂隙。这个假定的裂隙可能会扰乱 KCNQ1 电压感应域周围的电场,导致 KCNE2 与 KCNE1 对 KCNQ1 门控动力学的不同影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a187/3514736/bf0e6c24b81d/JGP_201210847_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验