Suppr超能文献

Ure2αCap 结构域的改变会引起 GATA 因子对雷帕霉素处理和氮限制的不同反应。

Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation.

机构信息

Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, B1070 Brussels, Belgium.

出版信息

J Biol Chem. 2013 Jan 18;288(3):1841-55. doi: 10.1074/jbc.M112.385054. Epub 2012 Nov 26.

Abstract

Ure2 is a phosphoprotein and central negative regulator of nitrogen-responsive Gln3/Gat1 localization and their ability to activate transcription. This negative regulation is achieved by the formation of Ure2-Gln3 and -Gat1 complexes that are thought to sequester these GATA factors in the cytoplasm of cells cultured in excess nitrogen. Ure2 itself is a dimer the monomer of which consists of two core domains and a flexible protruding αcap. Here, we show that alterations in this αcap abolish rapamycin-elicited nuclear Gln3 and, to a more limited extent, Gat1 localization. In contrast, these alterations have little demonstrable effect on the Gln3 and Gat1 responses to nitrogen limitation. Using two-dimensional PAGE we resolved eight rather than the two previously reported Ure2 isoforms and demonstrated Ure2 dephosphorylation to be stimulus-specific, occurring after rapamycin treatment but only minimally if at all in nitrogen-limited cells. Alteration of the αcap significantly diminished the response of Ure2 dephosphorylation to the TorC1 inhibitor, rapamycin. Furthermore, in contrast to Gln3, rapamycin-elicited Ure2 dephosphorylation occurred independently of Sit4 and Pph21/22 (PP2A) as well as Siw14, Ptc1, and Ppz1. Together, our data suggest that distinct regions of Ure2 are associated with the receipt and/or implementation of signals calling for cessation of GATA factor sequestration in the cytoplasm. This in turn is more consistent with the existence of distinct pathways for TorC1- and nitrogen limitation-dependent control than it is with these stimuli representing sequential steps in a single regulatory pathway.

摘要

Ure2 是一种磷酸化蛋白,是氮响应 Gln3/Gat1 定位及其激活转录能力的核心负调控因子。这种负调控是通过 Ure2-Gln3 和 -Gat1 复合物的形成实现的,这些复合物被认为将这些 GATA 因子在过量氮培养的细胞中隔离在细胞质中。Ure2 本身是一个二聚体,其单体由两个核心结构域和一个灵活的突出αcap 组成。在这里,我们表明,该αcap 的改变会破坏雷帕霉素诱导的核 Gln3 定位,并且在更有限的程度上,Gat1 定位。相比之下,这些改变对 Gln3 和 Gat1 对氮限制的反应几乎没有明显的影响。使用二维 PAGE,我们解析了八个而不是之前报道的两个 Ure2 同工型,并证明 Ure2 去磷酸化是刺激特异性的,在雷帕霉素处理后发生,但在氮限制细胞中几乎没有发生。αcap 的改变显著降低了 Ure2 去磷酸化对 TorC1 抑制剂雷帕霉素的反应。此外,与 Gln3 相反,雷帕霉素诱导的 Ure2 去磷酸化独立于 Sit4 和 Pph21/22 (PP2A) 以及 Siw14、Ptc1 和 Ppz1 发生。总之,我们的数据表明,Ure2 的不同区域与接收和/或实施信号有关,这些信号要求停止 GATA 因子在细胞质中的隔离。这反过来更符合 TorC1 和氮限制依赖性控制存在不同途径的观点,而不是这些刺激代表单一调节途径中的连续步骤。

相似文献

1
Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation.
J Biol Chem. 2013 Jan 18;288(3):1841-55. doi: 10.1074/jbc.M112.385054. Epub 2012 Nov 26.
8
More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in .
Genetics. 2018 Jan;208(1):207-227. doi: 10.1534/genetics.117.300457. Epub 2017 Nov 7.
9
Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated.
Genetics. 2019 Aug;212(4):1205-1225. doi: 10.1534/genetics.119.302371. Epub 2019 Jun 18.

引用本文的文献

2
Investigating the role of the transcriptional regulator Ure2 on the metabolism of Saccharomyces cerevisiae: a multi-omics approach.
Appl Microbiol Biotechnol. 2021 Jun;105(12):5103-5112. doi: 10.1007/s00253-021-11394-9. Epub 2021 Jun 21.
4
Next Generation Winemakers: Genetic Engineering in for Trendy Challenges.
Bioengineering (Basel). 2020 Oct 14;7(4):128. doi: 10.3390/bioengineering7040128.
5
Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated.
Genetics. 2019 Aug;212(4):1205-1225. doi: 10.1534/genetics.119.302371. Epub 2019 Jun 18.
7
Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiae.
World J Microbiol Biotechnol. 2018 Mar 13;34(3):47. doi: 10.1007/s11274-018-2430-y.
8
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2018 Feb 7;82(1). doi: 10.1128/MMBR.00040-17. Print 2018 Jun.
9
More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in .
Genetics. 2018 Jan;208(1):207-227. doi: 10.1534/genetics.117.300457. Epub 2017 Nov 7.
10
Yeast RNA-Binding Protein Nab3 Regulates Genes Involved in Nitrogen Metabolism.
Mol Cell Biol. 2017 Aug 28;37(18). doi: 10.1128/MCB.00154-17. Print 2017 Sep 15.

本文引用的文献

1
Nutritional control of growth and development in yeast.
Genetics. 2012 Sep;192(1):73-105. doi: 10.1534/genetics.111.135731.
2
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae.
Genetics. 2012 Mar;190(3):885-929. doi: 10.1534/genetics.111.133306.
3
Target of rapamycin (TOR) in nutrient signaling and growth control.
Genetics. 2011 Dec;189(4):1177-201. doi: 10.1534/genetics.111.133363.
8
Deciphering cellular functions of protein phosphatases by comparison of gene expression profiles in Saccharomyces cerevisiae.
J Biosci Bioeng. 2010 May;109(5):433-41. doi: 10.1016/j.jbiosc.2009.10.023. Epub 2009 Dec 5.
9
Normal function of the yeast TOR pathway requires the type 2C protein phosphatase Ptc1.
Mol Cell Biol. 2009 May;29(10):2876-88. doi: 10.1128/MCB.01740-08. Epub 2009 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验