Suppr超能文献

组蛋白赖氨酸甲基化动态:建立、调控和生物学影响。

Histone lysine methylation dynamics: establishment, regulation, and biological impact.

机构信息

Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA.

出版信息

Mol Cell. 2012 Nov 30;48(4):491-507. doi: 10.1016/j.molcel.2012.11.006.

Abstract

Histone lysine methylation has emerged as a critical player in the regulation of gene expression, cell cycle, genome stability, and nuclear architecture. Over the past decade, a tremendous amount of progress has led to the characterization of methyl modifications and the lysine methyltransferases (KMTs) and lysine demethylases (KDMs) that regulate them. Here, we review the discovery and characterization of the KMTs and KDMs and the methyl modifications they regulate. We discuss the localization of the KMTs and KDMs as well as the distribution of lysine methylation throughout the genome. We highlight how these data have shaped our view of lysine methylation as a key determinant of complex chromatin states. Finally, we discuss the regulation of KMTs and KDMs by proteasomal degradation, posttranscriptional mechanisms, and metabolic status. We propose key questions for the field and highlight areas that we predict will yield exciting discoveries in the years to come.

摘要

组蛋白赖氨酸甲基化已成为调节基因表达、细胞周期、基因组稳定性和核结构的关键因素。在过去的十年中,大量的研究进展使得甲基化修饰以及调控它们的赖氨酸甲基转移酶(KMTs)和赖氨酸去甲基化酶(KDMs)得以被描绘出来。在这里,我们回顾了 KMTs 和 KDMs 的发现和特性,以及它们调控的甲基化修饰。我们讨论了 KMTs 和 KDMs 的定位以及赖氨酸甲基化在整个基因组中的分布。我们强调了这些数据如何使我们将赖氨酸甲基化视为复杂染色质状态的关键决定因素。最后,我们讨论了 KMTs 和 KDMs 的调节,包括蛋白酶体降解、转录后机制和代谢状态。我们为该领域提出了关键问题,并强调了我们预测在未来几年将产生令人兴奋发现的领域。

相似文献

1
Histone lysine methylation dynamics: establishment, regulation, and biological impact.
Mol Cell. 2012 Nov 30;48(4):491-507. doi: 10.1016/j.molcel.2012.11.006.
2
Molecular basis for substrate recognition by lysine methyltransferases and demethylases.
Biochim Biophys Acta. 2014 Dec;1839(12):1404-15. doi: 10.1016/j.bbagrm.2014.06.008. Epub 2014 Jun 17.
3
Examining the impact of gene variants on histone lysine methylation.
Biochim Biophys Acta. 2014 Dec;1839(12):1463-76. doi: 10.1016/j.bbagrm.2014.05.014. Epub 2014 May 23.
4
Oncoepigenomics: making histone lysine methylation count.
Eur J Med Chem. 2012 Oct;56:179-94. doi: 10.1016/j.ejmech.2012.08.010. Epub 2012 Aug 11.
5
Disorders of histone methylation: Molecular basis and clinical syndromes.
Clin Genet. 2022 Sep;102(3):169-181. doi: 10.1111/cge.14181. Epub 2022 Jul 6.
6
Targeting histone lysine methylation in cancer.
Pharmacol Ther. 2015 Jun;150:1-22. doi: 10.1016/j.pharmthera.2015.01.002. Epub 2015 Jan 9.
7
Insights into the epigenetic mechanisms involving histone lysine methylation and demethylation in ischemia induced damage and repair has therapeutic implication.
Biochim Biophys Acta Mol Basis Dis. 2017 Jan;1863(1):152-164. doi: 10.1016/j.bbadis.2016.09.014. Epub 2016 Sep 21.
8
Tipping the lysine methylation balance in disease.
Biopolymers. 2013 Feb;99(2):127-35. doi: 10.1002/bip.22136.
9
Small molecule epigenetic inhibitors targeted to histone lysine methyltransferases and demethylases.
Q Rev Biophys. 2013 Nov;46(4):349-73. doi: 10.1017/S0033583513000085. Epub 2013 Sep 2.
10
Dynamics of histone lysine methylation: structures of methyl writers and erasers.
Prog Drug Res. 2011;67:107-24. doi: 10.1007/978-3-7643-8989-5_6.

引用本文的文献

1
Identification and validation of a histone modification-related gene signature to predict the prognosis of multiple myeloma.
Front Genet. 2025 Aug 28;16:1613631. doi: 10.3389/fgene.2025.1613631. eCollection 2025.
2
Epigenetic Modifications in Osteosarcoma: Mechanisms and Therapeutic Strategies.
Life (Basel). 2025 Jul 28;15(8):1202. doi: 10.3390/life15081202.
3
Epigenetic Mechanisms Governing Nrf2 Expression and Its Role in Ferroptosis.
Biomedicines. 2025 Aug 5;13(8):1913. doi: 10.3390/biomedicines13081913.
4
Environmental Toxicants in the Hispanic Community Epigenetically Contributing to Preeclampsia.
Cardiovasc Toxicol. 2025 Oct;25(10):1471-1490. doi: 10.1007/s12012-025-10049-9. Epub 2025 Jul 31.
5
SETDB1 knockdown boosts recombinant protein in CHO cells via epigenetic transcriptional silencing.
AMB Express. 2025 Jul 26;15(1):110. doi: 10.1186/s13568-025-01914-5.
8
JIB-04 improves PPARγ expression and enhances adipogenic differentiation efficiency in human umbilical cord mesenchymal stem cells.
Biochem Biophys Rep. 2025 Jul 9;43:102142. doi: 10.1016/j.bbrep.2025.102142. eCollection 2025 Sep.

本文引用的文献

1
Tipping the lysine methylation balance in disease.
Biopolymers. 2013 Feb;99(2):127-35. doi: 10.1002/bip.22136.
2
Asymmetrically modified nucleosomes.
Cell. 2012 Sep 28;151(1):181-93. doi: 10.1016/j.cell.2012.09.002.
3
Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity.
Cell. 2012 Aug 31;150(5):948-60. doi: 10.1016/j.cell.2012.06.048.
4
Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery.
Cell. 2012 Aug 31;150(5):934-47. doi: 10.1016/j.cell.2012.06.051.
6
K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas.
Acta Neuropathol. 2012 Sep;124(3):439-47. doi: 10.1007/s00401-012-0998-0. Epub 2012 Jun 3.
7
LOX out, histones: a new enzyme is nipping at your tails.
Mol Cell. 2012 May 11;46(3):243-4. doi: 10.1016/j.molcel.2012.04.023.
8
Lysyl oxidase-like 2 deaminates lysine 4 in histone H3.
Mol Cell. 2012 May 11;46(3):369-76. doi: 10.1016/j.molcel.2012.03.002. Epub 2012 Apr 5.
9
Histone methylation: a dynamic mark in health, disease and inheritance.
Nat Rev Genet. 2012 Apr 3;13(5):343-57. doi: 10.1038/nrg3173.
10
Metabolic reprogramming: a cancer hallmark even warburg did not anticipate.
Cancer Cell. 2012 Mar 20;21(3):297-308. doi: 10.1016/j.ccr.2012.02.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验