Hannover Medical School/Institute for Experimental Hematology, OE 6960, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
Gene. 2013 Feb 15;515(1):1-27. doi: 10.1016/j.gene.2012.11.016. Epub 2012 Nov 29.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After "gene swapping" the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided ("serial RMCE"). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites ("heterospecific FRT-doublets"), into the LTRs of lentiviral vectors. These "twin sites" enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single "FRT-twin". Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic "safe harbors" (GOIs) for re-use. This is enabled by the capacity of "FRT-twins" to accommodate any incoming RMCE-donor cassette with a compatible design.
自 1991 年以来,Tyr 重组酶 Flp 和 Cre 的发展为将转基因物可预测地插入哺乳动物细胞的相容靶位提供了优越的策略。早期的方法受到整合途径的可逆性和原核载体部分的共同引入引发不受控制的异染色质化的事实的限制。1994 年 Flp-重组酶介导的盒式交换进入该领域时,克服了这种缺陷。RMCE 通过精确地用相容的供体构建体替换基因组靶盒,实现了增强的标记和交换策略。在“基因交换”之后,供体盒被安全锁定,但如果提供了其他相容的供体盒,它仍然可以被重新动员(“连续 RMCE”)。这些特性极大地扩展了系统的、逐步的基因组修饰的选择。第一个十年主要以生物技术目的的细胞系的系统产生为主导。基于所得菌株的可重复表达能力,出现了一个综合的工具盒,用于多种用途,这构成了本综述的第一部分。然而,该概念本身并没有提供获得能够与工业多拷贝细胞系竞争的高产菌株的途径。这一事实促使人们进行了系统的改进,其中包括某些累积的定点整合途径。RMCE 进入干细胞领域后,其价值突显出来,它开始为诱导多能干细胞(iPS-)的产生及其随后的分化做出贡献,产生用于诊断和治疗目的的多种细胞类型。这一主题牢牢依赖于第一个十年发展的策略,并可以看作是本文的主要目标。在这种情况下,串联 Flp-RMCE 方案的一个意外的、强大的特性是能够重新打开在该位点经历了强制性沉默过程之前用于建立 iPS 状态的位点。其他相关的选择涉及到将复合 Flp 识别靶位(“异源 FRT-二联体”)引入慢病毒载体的 LTR 中。这些“双联体”增强了 iPS 重编程和分化的安全性,因为它们可以随后定量切除转基因物,只留下一个“FRT-双联体”。这种策略结合了常见的逆转录病毒和慢病毒系统的既定表达潜力,并提供了随时终止该过程的选择。剩余的基因组标签用于鉴定和表征插入位点,目的是识别基因组的“安全港”(GOI)以供重复使用。这是通过“FRT-双联体”容纳任何具有相容设计的传入 RMCE-供体盒的能力来实现的。