Suppr超能文献

估算新生儿儿童或青少年肥胖风险:纵向出生队列研究的启示。

Estimation of newborn risk for child or adolescent obesity: lessons from longitudinal birth cohorts.

机构信息

Unité Mixte de Recherche 8199, Centre National de Recherche Scientifique (CNRS) and Pasteur Institute, Lille, France.

出版信息

PLoS One. 2012;7(11):e49919. doi: 10.1371/journal.pone.0049919. Epub 2012 Nov 28.

Abstract

OBJECTIVES

Prevention of obesity should start as early as possible after birth. We aimed to build clinically useful equations estimating the risk of later obesity in newborns, as a first step towards focused early prevention against the global obesity epidemic.

METHODS

We analyzed the lifetime Northern Finland Birth Cohort 1986 (NFBC1986) (N = 4,032) to draw predictive equations for childhood and adolescent obesity from traditional risk factors (parental BMI, birth weight, maternal gestational weight gain, behaviour and social indicators), and a genetic score built from 39 BMI/obesity-associated polymorphisms. We performed validation analyses in a retrospective cohort of 1,503 Italian children and in a prospective cohort of 1,032 U.S. children.

RESULTS

In the NFBC1986, the cumulative accuracy of traditional risk factors predicting childhood obesity, adolescent obesity, and childhood obesity persistent into adolescence was good: AUROC = 0·78[0·74-0.82], 0·75[0·71-0·79] and 0·85[0·80-0·90] respectively (all p<0·001). Adding the genetic score produced discrimination improvements ≤1%. The NFBC1986 equation for childhood obesity remained acceptably accurate when applied to the Italian and the U.S. cohort (AUROC = 0·70[0·63-0·77] and 0·73[0·67-0·80] respectively) and the two additional equations for childhood obesity newly drawn from the Italian and the U.S. datasets showed good accuracy in respective cohorts (AUROC = 0·74[0·69-0·79] and 0·79[0·73-0·84]) (all p<0·001). The three equations for childhood obesity were converted into simple Excel risk calculators for potential clinical use.

CONCLUSION

This study provides the first example of handy tools for predicting childhood obesity in newborns by means of easily recorded information, while it shows that currently known genetic variants have very little usefulness for such prediction.

摘要

目的

肥胖的预防应在出生后尽早开始。我们旨在建立临床有用的方程,以估计新生儿日后肥胖的风险,作为针对全球肥胖流行进行有针对性的早期预防的第一步。

方法

我们分析了终生芬兰北部出生队列 1986 年(NFBC1986)(N=4032)的数据,从传统危险因素(父母 BMI、出生体重、母亲孕期体重增加、行为和社会指标)以及从 39 个 BMI/肥胖相关多态性构建的遗传评分中得出儿童和青少年肥胖的预测方程。我们在意大利的 1503 名儿童回顾性队列和美国的 1032 名儿童前瞻性队列中进行了验证分析。

结果

在 NFBC1986 中,传统危险因素预测儿童肥胖、青少年肥胖和儿童肥胖持续到青少年期的累积准确性较好:AUROC=0.78[0.74-0.82]、0.75[0.71-0.79]和 0.85[0.80-0.90](均<0.001)。添加遗传评分可提高 1%以下的区分度。NFBC1986 儿童肥胖方程应用于意大利和美国队列时仍具有可接受的准确性(AUROC=0.70[0.63-0.77]和 0.73[0.67-0.80]),从意大利和美国数据集中新绘制的另外两个儿童肥胖方程在各自的队列中表现出良好的准确性(AUROC=0.74[0.69-0.79]和 0.79[0.73-0.84])(均<0.001)。这三个儿童肥胖方程已转换为简单的 Excel 风险计算器,以便于临床使用。

结论

本研究首次提供了通过易于记录的信息预测新生儿儿童肥胖的简便工具,同时表明目前已知的遗传变异对这种预测几乎没有用处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a4e/3509134/de40ccf7575a/pone.0049919.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验