Pereira Paulo J, Moshchalkov Victor V, Chibotaru Liviu F
INPAC-Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056709. doi: 10.1103/PhysRevE.86.056709. Epub 2012 Nov 21.
We present a method for finding the condensate distribution at the nucleation of superconductivity for arbitrary polygons. The method is based on conformal mapping of the analytical solution of the linearized Ginzburg-Landau problem for the disk and uses the superconducting gauge for the magnetic potential proposed earlier. As a demonstration of the method's accuracy, we calculate the distribution of the order parameter in regular polygons and compare the obtained solutions with available numerical results. As an example of an irregular polygon, we consider a deformed hexagon and prove that its calculation with the proposed method requires the same level of computational efforts as the regular ones. Finally, we extend the method over samples with arbitrary smooth boundaries. With this, we have made simulations for an experimental sample. They have shown perfect agreement with experimental data.
我们提出了一种用于求解任意多边形超导成核时凝聚态分布的方法。该方法基于圆盘线性化金兹堡 - 朗道问题解析解的共形映射,并采用了先前提出的超导规范来描述磁势。为证明该方法的准确性,我们计算了正多边形中的序参量分布,并将所得结果与现有的数值结果进行比较。作为不规则多边形的一个例子,我们考虑一个变形的六边形,并证明用所提出的方法计算它所需的计算量与正多边形相同。最后,我们将该方法扩展到具有任意光滑边界的样品上。据此,我们对一个实验样品进行了模拟。模拟结果与实验数据显示出完美的一致性。