Suppr超能文献

肽主链采样与自适应偏置力算法的收敛性。

Peptide backbone sampling convergence with the adaptive biasing force algorithm.

机构信息

Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, Maine 04103, USA.

出版信息

J Phys Chem B. 2013 Jan 17;117(2):518-26. doi: 10.1021/jp309741j. Epub 2013 Jan 2.

Abstract

Complete Boltzmann sampling of reaction coordinates in biomolecular systems continues to be a challenge for unbiased molecular dynamics simulations. A growing number of methods have been developed for applying biases to biomolecular systems to enhance sampling while enabling recovery of the unbiased (Boltzmann) distribution of states. The adaptive biasing force (ABF) algorithm is one such method and works by canceling out the average force along the desired reaction coordinate(s) using an estimate of this force progressively accumulated during the simulation. Upon completion of the simulation, the potential of mean force, and therefore Boltzmann distribution of states, is obtained by integrating this average force. In an effort to characterize the expected performance in applications such as protein loop sampling, ABF was applied to the full ranges of the Ramachandran φ/ψ backbone dihedral reaction coordinates for dipeptides of the 20 amino acids using all-atom explicit-water molecular dynamics simulations. Approximately half of the dipeptides exhibited robust and rapid convergence of the potential of mean force as a function of φ/ψ in triplicate 50 ns simulations, while the remainder exhibited varying degrees of less complete convergence. The greatest difficulties in achieving converged ABF sampling were seen in the branched-side chain amino acids threonine and valine, as well as the special case of proline. Proline dipeptide sampling was further complicated by trans-to-cis peptide bond isomerization not observed in unbiased control molecular dynamics simulations. Overall, the ABF method was found to be a robust means of sampling the entire φ/ψ reaction coordinate for the 20 amino acids, including high free-energy regions typically inaccessible in standard molecular dynamics simulations.

摘要

在生物分子系统中对反应坐标进行完整的玻尔兹曼抽样仍然是无偏分子动力学模拟的一个挑战。已经开发出越来越多的方法来对生物分子系统施加偏差,以增强采样,同时使无偏(玻尔兹曼)状态分布得以恢复。自适应偏置力(ABF)算法就是这样一种方法,它通过使用在模拟过程中逐步累积的该力的估计值来抵消沿所需反应坐标的平均力来工作。模拟完成后,通过积分该平均力来获得平均力势,从而获得玻尔兹曼状态分布。为了在蛋白质环采样等应用中表征预期的性能,使用全原子显式水分子动力学模拟对 20 种氨基酸的二肽的 Ramachandran φ/ψ 主链二面角反应坐标的全范围应用 ABF。在重复的 50ns 模拟中,大约一半的二肽表现出平均力势随 φ/ψ 的快速而稳健的收敛,而其余的则表现出不同程度的收敛不完全。在实现收敛的 ABF 采样方面遇到的最大困难是在支链侧链氨基酸苏氨酸和缬氨酸以及脯氨酸的特殊情况下。脯氨酸二肽采样进一步复杂化,因为在无偏控制分子动力学模拟中没有观察到反式到顺式肽键异构化。总体而言,ABF 方法被发现是一种对 20 种氨基酸的整个 φ/ψ 反应坐标进行采样的稳健方法,包括在标准分子动力学模拟中通常无法访问的高自由能区域。

相似文献

1
Peptide backbone sampling convergence with the adaptive biasing force algorithm.
J Phys Chem B. 2013 Jan 17;117(2):518-26. doi: 10.1021/jp309741j. Epub 2013 Jan 2.
2
Taming Rugged Free Energy Landscapes Using an Average Force.
Acc Chem Res. 2019 Nov 19;52(11):3254-3264. doi: 10.1021/acs.accounts.9b00473. Epub 2019 Nov 4.
3
Hamiltonian replica-exchange simulations with adaptive biasing of peptide backbone and side chain dihedral angles.
J Comput Chem. 2014 Jan 15;35(2):150-8. doi: 10.1002/jcc.23476. Epub 2013 Oct 31.
7
Peptide Bond Isomerization in High-Temperature Simulations.
J Chem Theory Comput. 2016 Apr 12;12(4):1989-99. doi: 10.1021/acs.jctc.5b01022. Epub 2016 Mar 15.
10
Free energy landscapes of peptides by enhanced conformational sampling.
J Mol Biol. 2000 Feb 11;296(1):197-216. doi: 10.1006/jmbi.1999.3440.

引用本文的文献

1
Molecular Modelling in Bioactive Peptide Discovery and Characterisation.
Biomolecules. 2025 Apr 3;15(4):524. doi: 10.3390/biom15040524.
2
Computational study on the allosteric mechanism of IF4E-1 by 4E-interacting protein-1: Unravelling the determinants of mGTP cap recognition.
Comput Struct Biotechnol J. 2021 Apr 5;19:2027-2044. doi: 10.1016/j.csbj.2021.03.036. eCollection 2021.
3
Structure and Dynamics of a Site-Specific Labeled Fc Fragment with Altered Effector Functions.
Pharmaceutics. 2019 Oct 21;11(10):546. doi: 10.3390/pharmaceutics11100546.
7
Native proteins trap high-energy transit conformations.
Sci Adv. 2015 Oct 16;1(9):e1501188. doi: 10.1126/sciadv.1501188. eCollection 2015 Oct.
8
Molecular dynamics of the proline switch and its role in Crk signaling.
J Phys Chem B. 2014 May 1;118(17):4535-45. doi: 10.1021/jp5013297. Epub 2014 Apr 16.
9
Collective variable approaches for single molecule flexible fitting and enhanced sampling.
Chem Rev. 2014 Mar 26;114(6):3353-65. doi: 10.1021/cr4005988. Epub 2014 Jan 21.
10
CD44 receptor unfolding enhances binding by freeing basic amino acids to contact carbohydrate ligand.
Biophys J. 2013 Sep 3;105(5):1217-26. doi: 10.1016/j.bpj.2013.07.041.

本文引用的文献

1
Exploring Multidimensional Free Energy Landscapes Using Time-Dependent Biases on Collective Variables.
J Chem Theory Comput. 2010 Jan 12;6(1):35-47. doi: 10.1021/ct9004432. Epub 2009 Dec 3.
2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Beyond microscopic reversibility: Are observable non-equilibrium processes precisely reversible?
J Chem Theory Comput. 2011 Aug 9;7(8):2520-2527. doi: 10.1021/ct200086k.
4
Mechanism of binding site conformational switching in the CD44-hyaluronan protein-carbohydrate binding interaction.
J Mol Biol. 2011 Mar 4;406(4):631-47. doi: 10.1016/j.jmb.2010.12.040. Epub 2011 Jan 7.
5
Targeting biomolecular flexibility with metadynamics.
Curr Opin Struct Biol. 2010 Apr;20(2):148-54. doi: 10.1016/j.sbi.2010.01.011. Epub 2010 Feb 18.
6
Basic ingredients of free energy calculations: a review.
J Comput Chem. 2010 Jun;31(8):1569-82. doi: 10.1002/jcc.21450.
7
CHARMM: the biomolecular simulation program.
J Comput Chem. 2009 Jul 30;30(10):1545-614. doi: 10.1002/jcc.21287.
8
Comparison of protein force fields for molecular dynamics simulations.
Methods Mol Biol. 2008;443:63-88. doi: 10.1007/978-1-59745-177-2_4.
9
Adaptive biasing force method for scalar and vector free energy calculations.
J Chem Phys. 2008 Apr 14;128(14):144120. doi: 10.1063/1.2829861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验