Suppr超能文献

运用蛋白质组学、血清生物标志物和生物信息学区分食管鳞状细胞癌和癌前病变。

Combining proteomics, serum biomarkers and bioinformatics to discriminate between esophageal squamous cell carcinoma and pre-cancerous lesion.

机构信息

Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.

出版信息

J Zhejiang Univ Sci B. 2012 Dec;13(12):964-71. doi: 10.1631/jzus.B1200066.

Abstract

OBJECTIVE

Biomarker assay is a noninvasive method for the early detection of esophageal squamous cell carcinoma (ESCC). Searching for new biomarkers with high specificity and sensitivity is very important for the early detection of ESCC. Serum surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF-MS) is a high throughput technology for identifying cancer biomarkers using drops of sera.

METHODS

In this study, 185 serum samples were taken from ESCC patients in a high incidence area and screened by SELDI. A support vector machine (SVM) algorithm was adopted to analyze the samples.

RESULTS

The SVM patterns successfully distinguished ESCC from pre-cancerous lesions (PCLs). Also, types of PCL, including dysplasia (DYS) and basal cell hyperplasia (BCH), and healthy controls (HC) were distinguished with an accuracy of 95.2% (DYS), 96.6% (BCH), and 93.8% (HC), respectively. A marker of 25.1 kDa was identified in the ESCC patterns whose peak intensity was observed to increase significantly during the development of esophageal carcinogenesis, and to decrease obviously after surgery.

CONCLUSIONS

We selected five ESCC biomarkers to form a diagnostic pattern which can discriminate among the different stages of esophageal carcinogenesis. This pattern can significantly improve the detection of ESCC.

摘要

目的

生物标志物检测是一种用于早期检测食管鳞状细胞癌(ESCC)的非侵入性方法。寻找具有高特异性和灵敏度的新生物标志物对于 ESCC 的早期检测非常重要。血清表面增强激光解吸/电离飞行时间质谱(SELDI-TOF-MS)是一种高通量技术,用于使用血清滴识别癌症生物标志物。

方法

本研究采用 SELDI 对高发地区的 185 例 ESCC 患者血清样本进行筛选。采用支持向量机(SVM)算法对样本进行分析。

结果

SVM 模式成功地区分了 ESCC 与癌前病变(PCL)。此外,还可以区分不同类型的 PCL,包括发育不良(DYS)和基底细胞增生(BCH)以及健康对照(HC),准确率分别为 95.2%(DYS)、96.6%(BCH)和 93.8%(HC)。在 ESCC 模式中鉴定出一个 25.1kDa 的标志物,其峰强度在食管癌发生发展过程中观察到明显增加,手术后明显降低。

结论

我们选择了五个 ESCC 生物标志物形成一个诊断模式,可区分食管癌变的不同阶段。该模式可显著提高 ESCC 的检测率。

相似文献

4
New potential biomarkers in the diagnosis of esophageal squamous cell carcinoma.
Biomarkers. 2009 Aug;14(5):340-6. doi: 10.1080/13547500902903055.
9
Utility of serum peptidome patterns of esophageal squamous cell carcinoma patients for comprehensive treatment.
Asian Pac J Cancer Prev. 2013;14(5):2919-23. doi: 10.7314/apjcp.2013.14.5.2919.

引用本文的文献

1
Artificial intelligence technique in detection of early esophageal cancer.
World J Gastroenterol. 2020 Oct 21;26(39):5959-5969. doi: 10.3748/wjg.v26.i39.5959.
2
Expression analysis of cyclooxygenase-2 in patients suffering from esophageal squamous cell carcinoma.
PLoS One. 2018 Oct 19;13(10):e0205508. doi: 10.1371/journal.pone.0205508. eCollection 2018.
4
Anaphylatoxin C3a: A potential biomarker for esophageal cancer diagnosis.
Mol Clin Oncol. 2018 Feb;8(2):315-319. doi: 10.3892/mco.2017.1524. Epub 2017 Dec 6.
6
A survey of computational tools for downstream analysis of proteomic and other omic datasets.
Hum Genomics. 2015 Oct 28;9:28. doi: 10.1186/s40246-015-0050-2.

本文引用的文献

2
Proteomic analysis of resectable non-small cell lung cancer: post-resection serum samples may be useful in identifying potential markers.
Interact Cardiovasc Thorac Surg. 2011 Jul;13(1):3-6. doi: 10.1510/icvts.2010.260166. Epub 2011 Apr 27.
3
Proteomic biomarkers for overall and progression-free survival in ovarian cancer patients.
Proteomics Clin Appl. 2010 Dec;4(12):940-52. doi: 10.1002/prca.200900171.
4
Identification of serum proteins involved in pancreatic cancer cachexia.
Life Sci. 2011 Jan 31;88(5-6):218-25. doi: 10.1016/j.lfs.2010.11.011. Epub 2010 Nov 19.
7
Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data.
BMC Bioinformatics. 2010 Feb 27;11:109. doi: 10.1186/1471-2105-11-109.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验