Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States.
Biomaterials. 2013 Feb;34(7):1772-80. doi: 10.1016/j.biomaterials.2012.11.032. Epub 2012 Dec 8.
Stem cell engineering, the manipulation and control of cells, harnesses tremendous potential for diagnosis and therapy of disease; however, it is still challenging to impart multifunctionalization onto stem cells to achieve both. Here we describe a mesenchymal stem cell (MSC)-based multifunctional platform to target orthotopic glioblastoma by integrating the tumor targeted delivery of mesenchymal stem cells and the multimodal imaging advantage of mesoporous silica nanoparticles (MSNs). Rapid cellular uptake, long retention time and stability of particles exemplify the potential that the combination of MSNs and MSCs has as a stem cell-based multifunctional platform. Using such a platform, we verified tumor-targeted delivery of MSCs by in vivo multimodal imaging in an orthotopic U87MG glioblastoma model, displaying higher tumor uptake than particles without MSCs. As a proof-of-concept, this MSC platform opens a new vision for multifunctional applications of cell products by combining the superiority of stem cells and nanoparticles for actively targeted delivery.
干细胞工程,即细胞的操纵和控制,具有巨大的疾病诊断和治疗潜力;然而,要赋予干细胞多功能性以实现这两个目标仍然具有挑战性。在这里,我们描述了一种基于间充质干细胞(MSC)的多功能平台,通过整合间充质干细胞的肿瘤靶向递送来靶向原位神经胶质瘤,以及介孔硅纳米粒子(MSNs)的多模式成像优势。颗粒的快速细胞摄取、长时间保留和稳定性体现了 MSNs 和 MSCs 结合作为基于干细胞的多功能平台的潜力。使用这样的平台,我们通过在原位 U87MG 神经胶质瘤模型中的体内多模式成像验证了 MSC 的肿瘤靶向递送,显示出比没有 MSC 的颗粒更高的肿瘤摄取率。作为概念验证,该 MSC 平台通过将干细胞和纳米颗粒的优势结合起来用于主动靶向递送来为细胞产品的多功能应用开辟了新的视野。